The structure of matrices with a maximum multiplicity eigenvalue
Main Author: | |
---|---|
Publication Date: | 2008 |
Other Authors: | , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10362/58385 |
Summary: | There is remarkable and distinctive structure among Hermitian matrices, whose graph is a given tree $T$ and that have an eigenvalue of multiplicity that is a maximum for $T$. Among such structure, we give several new results: (1) no vertex of $T$ may be ``neutral''; (2) neutral vertices may occur if the largest multiplicity is less than the maximum; (3) every Parter vertex has at least two downer branches; (4) removal of a Parter vertex changes the status of no other vertex; and (5) every set of Parter vertices forms a Parter set. Statements (3), (4) and (5) are also not generally true when the multiplicity is less than the maximum. Some of our results are used to give further insights into prior results, and both the review of necessary background and the development of new structural lemmas may be of independent interest. |
id |
RCAP_b6eec22e04c6232e6a4b6ba7bd1afc1d |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/58385 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
The structure of matrices with a maximum multiplicity eigenvalueHermitian matricesEigenvaluesMultiplicitiesMaximum multiplicityTreesPath cover numberParter verticesThere is remarkable and distinctive structure among Hermitian matrices, whose graph is a given tree $T$ and that have an eigenvalue of multiplicity that is a maximum for $T$. Among such structure, we give several new results: (1) no vertex of $T$ may be ``neutral''; (2) neutral vertices may occur if the largest multiplicity is less than the maximum; (3) every Parter vertex has at least two downer branches; (4) removal of a Parter vertex changes the status of no other vertex; and (5) every set of Parter vertices forms a Parter set. Statements (3), (4) and (5) are also not generally true when the multiplicity is less than the maximum. Some of our results are used to give further insights into prior results, and both the review of necessary background and the development of new structural lemmas may be of independent interest.DM - Departamento de MatemáticaCMA - Centro de Matemática e AplicaçõesRUNJohnson, Charles R.Leal-Duarte, AntónioSaiago, Carlos Manuel2019-01-23T23:19:42Z2008-08-012008-08-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article12application/pdfhttp://hdl.handle.net/10362/58385eng0024-3795PURE: 363736https://doi.org/10.1016/j.laa.2008.04.016info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T17:36:48Zoai:run.unl.pt:10362/58385Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:07:57.137265Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
The structure of matrices with a maximum multiplicity eigenvalue |
title |
The structure of matrices with a maximum multiplicity eigenvalue |
spellingShingle |
The structure of matrices with a maximum multiplicity eigenvalue Johnson, Charles R. Hermitian matrices Eigenvalues Multiplicities Maximum multiplicity Trees Path cover number Parter vertices |
title_short |
The structure of matrices with a maximum multiplicity eigenvalue |
title_full |
The structure of matrices with a maximum multiplicity eigenvalue |
title_fullStr |
The structure of matrices with a maximum multiplicity eigenvalue |
title_full_unstemmed |
The structure of matrices with a maximum multiplicity eigenvalue |
title_sort |
The structure of matrices with a maximum multiplicity eigenvalue |
author |
Johnson, Charles R. |
author_facet |
Johnson, Charles R. Leal-Duarte, António Saiago, Carlos Manuel |
author_role |
author |
author2 |
Leal-Duarte, António Saiago, Carlos Manuel |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
DM - Departamento de Matemática CMA - Centro de Matemática e Aplicações RUN |
dc.contributor.author.fl_str_mv |
Johnson, Charles R. Leal-Duarte, António Saiago, Carlos Manuel |
dc.subject.por.fl_str_mv |
Hermitian matrices Eigenvalues Multiplicities Maximum multiplicity Trees Path cover number Parter vertices |
topic |
Hermitian matrices Eigenvalues Multiplicities Maximum multiplicity Trees Path cover number Parter vertices |
description |
There is remarkable and distinctive structure among Hermitian matrices, whose graph is a given tree $T$ and that have an eigenvalue of multiplicity that is a maximum for $T$. Among such structure, we give several new results: (1) no vertex of $T$ may be ``neutral''; (2) neutral vertices may occur if the largest multiplicity is less than the maximum; (3) every Parter vertex has at least two downer branches; (4) removal of a Parter vertex changes the status of no other vertex; and (5) every set of Parter vertices forms a Parter set. Statements (3), (4) and (5) are also not generally true when the multiplicity is less than the maximum. Some of our results are used to give further insights into prior results, and both the review of necessary background and the development of new structural lemmas may be of independent interest. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-08-01 2008-08-01T00:00:00Z 2019-01-23T23:19:42Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/58385 |
url |
http://hdl.handle.net/10362/58385 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0024-3795 PURE: 363736 https://doi.org/10.1016/j.laa.2008.04.016 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
12 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833596456552890368 |