An Intrusion Detection and Prevention Framework for Internet-Integrated CoAP WSN

Bibliographic Details
Main Author: Granjal, Jorge
Publication Date: 2018
Other Authors: Pedroso, Artur
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: https://hdl.handle.net/10316/108056
https://doi.org/10.1155/2018/1753897
Summary: End-to-end communications between Internet devices and Internet-integrated constrained wireless sensing platforms will provide an important contribution to the enabling ofmany of the envisioned IoT applications and, in this context, securitymust be addressed when employing communication technologies such as 6LoWPAN and CoAP. Considering the constraints typically found on sensing devices in terms of energy, memory, and computational capability, the integration of Wireless Sensor Networks (WSN) with the Internet using such technologies will open new threats and attacks that must be dealt with, particularly those originated at devices without the constraints ofWSN sensors (e.g., Internet hosts). Existing encryption strategies for communications in IoT environments are unable to protect Internet-integrated WSN environments from Denial of Service (DoS) attacks, as well as from other forms of attacks at the network and application layers using CoAP. We may thus fairly consider that anomaly and intrusion detection will play a major role in the materialization of most of the envisioned IoT applications. In this article, we propose a framework to support intrusion detection and reaction in Internet-integrated CoAP WSN, and in the context of this framework we design and implement various approaches to support security against various classes of attacks. We have implemented and evaluated experimentally the proposed framework and mechanisms, considering various attack scenarios, and our approach was found to be viable, from the point of view of its impact on critical resources of sensing devices and of its efficiency in dealing with the considered attacks.
id RCAP_b549af2053595fe7cd58173f2b8c9499
oai_identifier_str oai:estudogeral.uc.pt:10316/108056
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling An Intrusion Detection and Prevention Framework for Internet-Integrated CoAP WSNEnd-to-end communications between Internet devices and Internet-integrated constrained wireless sensing platforms will provide an important contribution to the enabling ofmany of the envisioned IoT applications and, in this context, securitymust be addressed when employing communication technologies such as 6LoWPAN and CoAP. Considering the constraints typically found on sensing devices in terms of energy, memory, and computational capability, the integration of Wireless Sensor Networks (WSN) with the Internet using such technologies will open new threats and attacks that must be dealt with, particularly those originated at devices without the constraints ofWSN sensors (e.g., Internet hosts). Existing encryption strategies for communications in IoT environments are unable to protect Internet-integrated WSN environments from Denial of Service (DoS) attacks, as well as from other forms of attacks at the network and application layers using CoAP. We may thus fairly consider that anomaly and intrusion detection will play a major role in the materialization of most of the envisioned IoT applications. In this article, we propose a framework to support intrusion detection and reaction in Internet-integrated CoAP WSN, and in the context of this framework we design and implement various approaches to support security against various classes of attacks. We have implemented and evaluated experimentally the proposed framework and mechanisms, considering various attack scenarios, and our approach was found to be viable, from the point of view of its impact on critical resources of sensing devices and of its efficiency in dealing with the considered attacks.MobiWise project (P2020 SAICTPAC/ 0011/2015), cofinanced by COMPETE 2020, Portugal 2020 Operational Program for Competitiveness and Internationalization (POCI), European Union ERDF (European Regional Development Fund), and the Portuguese Foundation for Science and Technology (FCT).Hindawi2018info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttps://hdl.handle.net/10316/108056https://hdl.handle.net/10316/108056https://doi.org/10.1155/2018/1753897eng1939-01141939-0122Granjal, JorgePedroso, Arturinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-12-18T11:20:48Zoai:estudogeral.uc.pt:10316/108056Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T05:59:04.129668Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv An Intrusion Detection and Prevention Framework for Internet-Integrated CoAP WSN
title An Intrusion Detection and Prevention Framework for Internet-Integrated CoAP WSN
spellingShingle An Intrusion Detection and Prevention Framework for Internet-Integrated CoAP WSN
Granjal, Jorge
title_short An Intrusion Detection and Prevention Framework for Internet-Integrated CoAP WSN
title_full An Intrusion Detection and Prevention Framework for Internet-Integrated CoAP WSN
title_fullStr An Intrusion Detection and Prevention Framework for Internet-Integrated CoAP WSN
title_full_unstemmed An Intrusion Detection and Prevention Framework for Internet-Integrated CoAP WSN
title_sort An Intrusion Detection and Prevention Framework for Internet-Integrated CoAP WSN
author Granjal, Jorge
author_facet Granjal, Jorge
Pedroso, Artur
author_role author
author2 Pedroso, Artur
author2_role author
dc.contributor.author.fl_str_mv Granjal, Jorge
Pedroso, Artur
description End-to-end communications between Internet devices and Internet-integrated constrained wireless sensing platforms will provide an important contribution to the enabling ofmany of the envisioned IoT applications and, in this context, securitymust be addressed when employing communication technologies such as 6LoWPAN and CoAP. Considering the constraints typically found on sensing devices in terms of energy, memory, and computational capability, the integration of Wireless Sensor Networks (WSN) with the Internet using such technologies will open new threats and attacks that must be dealt with, particularly those originated at devices without the constraints ofWSN sensors (e.g., Internet hosts). Existing encryption strategies for communications in IoT environments are unable to protect Internet-integrated WSN environments from Denial of Service (DoS) attacks, as well as from other forms of attacks at the network and application layers using CoAP. We may thus fairly consider that anomaly and intrusion detection will play a major role in the materialization of most of the envisioned IoT applications. In this article, we propose a framework to support intrusion detection and reaction in Internet-integrated CoAP WSN, and in the context of this framework we design and implement various approaches to support security against various classes of attacks. We have implemented and evaluated experimentally the proposed framework and mechanisms, considering various attack scenarios, and our approach was found to be viable, from the point of view of its impact on critical resources of sensing devices and of its efficiency in dealing with the considered attacks.
publishDate 2018
dc.date.none.fl_str_mv 2018
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10316/108056
https://hdl.handle.net/10316/108056
https://doi.org/10.1155/2018/1753897
url https://hdl.handle.net/10316/108056
https://doi.org/10.1155/2018/1753897
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1939-0114
1939-0122
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Hindawi
publisher.none.fl_str_mv Hindawi
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833602539404132352