Efficient recovery algorithm for discrete valued sparse signals using an ADMM approach
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2017 |
| Outros Autores: | |
| Tipo de documento: | Artigo |
| Idioma: | eng |
| Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Texto Completo: | http://hdl.handle.net/10071/14512 |
Resumo: | Motivated by applications in wireless communications, in this paper we propose a reconstruction algorithm for sparse signals whose values are taken from a discrete set, using a limited number of noisy observations. Unlike conventional compressed sensing algorithms, the proposed approach incorporates knowledge of the discrete valued nature of the signal in the detection process. This is accomplished through the alternating direction method of the multipliers which is applied as a heuristic to decompose the associated maximum likelihood detection problem in order to find candidate solutions with a low computational complexity order. Numerical results in different scenarios show that the proposed algorithm is capable of achieving very competitive recovery error rates when compared with other existing suboptimal approaches. |
| id |
RCAP_b0c92a8af729b30f63eaaeb192dddc60 |
|---|---|
| oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/14512 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Efficient recovery algorithm for discrete valued sparse signals using an ADMM approachSparse signal recoveryDiscrete signal reconstructionCompressed sensingGeneralized spatial modulations (GSM)Large scale MIMO (LS-MIMO)Motivated by applications in wireless communications, in this paper we propose a reconstruction algorithm for sparse signals whose values are taken from a discrete set, using a limited number of noisy observations. Unlike conventional compressed sensing algorithms, the proposed approach incorporates knowledge of the discrete valued nature of the signal in the detection process. This is accomplished through the alternating direction method of the multipliers which is applied as a heuristic to decompose the associated maximum likelihood detection problem in order to find candidate solutions with a low computational complexity order. Numerical results in different scenarios show that the proposed algorithm is capable of achieving very competitive recovery error rates when compared with other existing suboptimal approaches.IEEE2017-10-17T16:34:40Z2017-01-01T00:00:00Z20172019-03-25T10:45:26Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10071/14512eng2169-353610.1109/ACCESS.2017.2754586Souto, N. M. B.Lopes, H. A.info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-07-07T03:07:53Zoai:repositorio.iscte-iul.pt:10071/14512Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T18:16:31.726736Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Efficient recovery algorithm for discrete valued sparse signals using an ADMM approach |
| title |
Efficient recovery algorithm for discrete valued sparse signals using an ADMM approach |
| spellingShingle |
Efficient recovery algorithm for discrete valued sparse signals using an ADMM approach Souto, N. M. B. Sparse signal recovery Discrete signal reconstruction Compressed sensing Generalized spatial modulations (GSM) Large scale MIMO (LS-MIMO) |
| title_short |
Efficient recovery algorithm for discrete valued sparse signals using an ADMM approach |
| title_full |
Efficient recovery algorithm for discrete valued sparse signals using an ADMM approach |
| title_fullStr |
Efficient recovery algorithm for discrete valued sparse signals using an ADMM approach |
| title_full_unstemmed |
Efficient recovery algorithm for discrete valued sparse signals using an ADMM approach |
| title_sort |
Efficient recovery algorithm for discrete valued sparse signals using an ADMM approach |
| author |
Souto, N. M. B. |
| author_facet |
Souto, N. M. B. Lopes, H. A. |
| author_role |
author |
| author2 |
Lopes, H. A. |
| author2_role |
author |
| dc.contributor.author.fl_str_mv |
Souto, N. M. B. Lopes, H. A. |
| dc.subject.por.fl_str_mv |
Sparse signal recovery Discrete signal reconstruction Compressed sensing Generalized spatial modulations (GSM) Large scale MIMO (LS-MIMO) |
| topic |
Sparse signal recovery Discrete signal reconstruction Compressed sensing Generalized spatial modulations (GSM) Large scale MIMO (LS-MIMO) |
| description |
Motivated by applications in wireless communications, in this paper we propose a reconstruction algorithm for sparse signals whose values are taken from a discrete set, using a limited number of noisy observations. Unlike conventional compressed sensing algorithms, the proposed approach incorporates knowledge of the discrete valued nature of the signal in the detection process. This is accomplished through the alternating direction method of the multipliers which is applied as a heuristic to decompose the associated maximum likelihood detection problem in order to find candidate solutions with a low computational complexity order. Numerical results in different scenarios show that the proposed algorithm is capable of achieving very competitive recovery error rates when compared with other existing suboptimal approaches. |
| publishDate |
2017 |
| dc.date.none.fl_str_mv |
2017-10-17T16:34:40Z 2017-01-01T00:00:00Z 2017 2019-03-25T10:45:26Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/14512 |
| url |
http://hdl.handle.net/10071/14512 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
2169-3536 10.1109/ACCESS.2017.2754586 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
IEEE |
| publisher.none.fl_str_mv |
IEEE |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833597299786252288 |