Regularity of Wiener-Hopf plus Hankel operators

Bibliographic Details
Main Author: Silva, Anabela de Sousa e
Publication Date: 2011
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10773/7936
Summary: In this thesis we consider Wiener-Hopf-Hankel operators with Fourier symbols in the class of almost periodic, semi-almost periodic and piecewise almost periodic functions. In the first place, we consider Wiener-Hopf-Hankel operators acting between L2 Lebesgue spaces with possibly different Fourier matrix symbols in the Wiener-Hopf and in the Hankel operators. In the second place, we consider these operators with equal Fourier symbols and acting between weighted Lebesgue spaces Lp(R;w), where 1 < p < 1 and w belongs to a subclass of Muckenhoupt weights. In addition, singular integral operators with Carleman shift and almost periodic coefficients are also object of study. The main purpose of this thesis is to obtain regularity properties characterizations of those classes of operators. By regularity properties we mean those that depend on the kernel and cokernel of the operator. The main techniques used are the equivalence relations between operators and the factorization theory. An invertibility characterization for the Wiener-Hopf-Hankel operators with symbols belonging to the Wiener subclass of almost periodic functions APW is obtained, assuming that a particular matrix function admits a numerical range bounded away from zero and based on the values of a certain mean motion. For Wiener-Hopf-Hankel operators acting between L2-spaces and with possibly different AP symbols, criteria for the semi-Fredholm property and for one-sided and both-sided invertibility are obtained and the inverses for all possible cases are exhibited. For such results, a new type of AP factorization is introduced. Singular integral operators with Carleman shift and scalar almost periodic coefficients are also studied. Considering an auxiliar and simpler operator, and using appropriate factorizations, the dimensions of the kernels and cokernels of those operators are obtained. For Wiener-Hopf-Hankel operators with (possibly different) SAP and PAP matrix symbols and acting between L2-spaces, criteria for the Fredholm property are presented as well as the sum of the Fredholm indices of the Wiener-Hopf plus Hankel and Wiener-Hopf minus Hankel operators. By studying dependencies between different matrix Fourier symbols of Wiener-Hopf plus Hankel operators acting between L2-spaces, results about the kernel and cokernel of those operators are derived. For Wiener-Hopf-Hankel operators acting between weighted Lebesgue spaces, Lp(R;w), a study is made considering equal scalar Fourier symbols in the Wiener-Hopf and in the Hankel operators and belonging to the classes of APp;w, SAPp;w and PAPp;w. It is obtained an invertibility characterization for Wiener-Hopf plus Hankel operators with APp;w symbols. In the cases for which the Fourier symbols of the operators belong to SAPp;w and PAPp;w, it is obtained semi-Fredholm criteria for Wiener-Hopf-Hankel operators as well as formulas for the Fredholm indices of those operators.
id RCAP_b0b434982a1aabaee112f5702db81229
oai_identifier_str oai:ria.ua.pt:10773/7936
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Regularity of Wiener-Hopf plus Hankel operatorsMatemáticaOperadores de Wiener-HopfEquações de FredholmFactorização (Matemática)Operadores integraisIn this thesis we consider Wiener-Hopf-Hankel operators with Fourier symbols in the class of almost periodic, semi-almost periodic and piecewise almost periodic functions. In the first place, we consider Wiener-Hopf-Hankel operators acting between L2 Lebesgue spaces with possibly different Fourier matrix symbols in the Wiener-Hopf and in the Hankel operators. In the second place, we consider these operators with equal Fourier symbols and acting between weighted Lebesgue spaces Lp(R;w), where 1 < p < 1 and w belongs to a subclass of Muckenhoupt weights. In addition, singular integral operators with Carleman shift and almost periodic coefficients are also object of study. The main purpose of this thesis is to obtain regularity properties characterizations of those classes of operators. By regularity properties we mean those that depend on the kernel and cokernel of the operator. The main techniques used are the equivalence relations between operators and the factorization theory. An invertibility characterization for the Wiener-Hopf-Hankel operators with symbols belonging to the Wiener subclass of almost periodic functions APW is obtained, assuming that a particular matrix function admits a numerical range bounded away from zero and based on the values of a certain mean motion. For Wiener-Hopf-Hankel operators acting between L2-spaces and with possibly different AP symbols, criteria for the semi-Fredholm property and for one-sided and both-sided invertibility are obtained and the inverses for all possible cases are exhibited. For such results, a new type of AP factorization is introduced. Singular integral operators with Carleman shift and scalar almost periodic coefficients are also studied. Considering an auxiliar and simpler operator, and using appropriate factorizations, the dimensions of the kernels and cokernels of those operators are obtained. For Wiener-Hopf-Hankel operators with (possibly different) SAP and PAP matrix symbols and acting between L2-spaces, criteria for the Fredholm property are presented as well as the sum of the Fredholm indices of the Wiener-Hopf plus Hankel and Wiener-Hopf minus Hankel operators. By studying dependencies between different matrix Fourier symbols of Wiener-Hopf plus Hankel operators acting between L2-spaces, results about the kernel and cokernel of those operators are derived. For Wiener-Hopf-Hankel operators acting between weighted Lebesgue spaces, Lp(R;w), a study is made considering equal scalar Fourier symbols in the Wiener-Hopf and in the Hankel operators and belonging to the classes of APp;w, SAPp;w and PAPp;w. It is obtained an invertibility characterization for Wiener-Hopf plus Hankel operators with APp;w symbols. In the cases for which the Fourier symbols of the operators belong to SAPp;w and PAPp;w, it is obtained semi-Fredholm criteria for Wiener-Hopf-Hankel operators as well as formulas for the Fredholm indices of those operators.Nesta tese consideramos operadores de Wiener-Hopf-Hankel com símbolos de Fourier nas classes das funções quase-periódicas, semi-quase periódicas e quase periódicas por troços. Começamos por considerar operadores de Wiener-Hopf-Hankel actuando entre espaços de Lebesgue L2 com símbolos matriciais de Fourier possivelmente diferentes nos operadores de Wiener- Hopf e de Hankel. Seguidamente, consideramos estes operadores com símbolos de Fourier iguais actuando entre espaços de Lebesgue com pesos Lp(R;w), onde 1 < p < 1 e w pertence a uma subclasse de pesos de Muckenhoupt. Adicionalmente, são também objecto de estudo operadores singulares integrais com deslocamento de Carleman e coeficientes quaseperiódicos. O objectivo principal desta tese é obter caracterizações para tais classes de operadores no que refere às suas propriedades de regularidade. Por propriedades de regularidade nós designamos aquelas propriedades que dependem do núcleo e do co-núcleo do operador. As principais técnicas usadas são as relações de equivalência entre operadores e a teoria da factorização. Uma caracterização da invertibilidade de operadores de Wiener-Hopf-Hankel com símbolos pertencentes à subclasse de Wiener de funções quaseperiódicas APW é obtida, assumindo que uma particular função matricial admite um contradomínio numérico limitado fora de zero e baseando-nos nos valores uma certa média de deslocamento. Para os operadores de Wiener-Hopf-Hankel actuando entre espaços de Lebesgue L2 e com símbolos AP possivelmente diferentes, critérios para a propriedade de semi-Fredholm e para a invertibilidade lateral e bi-lateral são obtidos e inversos para todos os casos possíveis são apresentados. Com vista a tais resultados, um novo tipo de factorização AP é introduzido. Operadores singulares integrais com deslocamento de Carleman e com coeficientes escalares quase-periódicos são também estudados. Considerando um operador auxiliar mais simples e usando factorizações apropriadas, as dimensões dos núcleos e dos co-núcleos destes operadores são obtidas. Para operadores de Wiener-Hopf-Hankel com símbolos matriciais SAP e PAP (possivelmente diferentes) actuando entre espaços de Lebesgue L2, critérios para a propriedade de Fredholm são apresentados tal como a soma dos índices de Fredholm dos operadores de Wiener-Hopf mais Hankel e Wiener-Hopf menos Hankel. Estudando dependências entre diferentes símbolos matriciais de Fourier dos operadores de Wiener-Hopf mais Hankel actuando entre espaços de Lebesgue L2, conclusões são obtidas acerca do núcleo e do co-núcleo destes operadores. Para operadores de Wiener-Hopf-Hankel actuando entre espaços de Lebesgue com pesos, Lp(R;w), é feito um estudo considerando símbolos de Fourier escalares e iguais nos operadores de Wiener-Hopf e de Hankel e pertencentes às classes APp;w, SAPp;w e PAPp;w. É obtida uma caracterização da invertibilidade para operadores de Wiener-Hopf mais Hankel com símbolos APp;w. No caso em que os símbolos de Fourier dos operadores pertencem a SAPp;w e PAPp;w, são obtidos critérios de semi-Fredholm para os operadores de Wiener-Hopf-Hankel assim como fórmulas para os índices de Fredholm de tais operadores.Universidade de Aveiro2013-02-05T15:48:38Z2011-12-14T00:00:00Z2011-12-14doctoral thesisinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10773/7936TID:101255365engSilva, Anabela de Sousa einfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T03:41:37Zoai:ria.ua.pt:10773/7936Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T13:43:34.763892Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Regularity of Wiener-Hopf plus Hankel operators
title Regularity of Wiener-Hopf plus Hankel operators
spellingShingle Regularity of Wiener-Hopf plus Hankel operators
Silva, Anabela de Sousa e
Matemática
Operadores de Wiener-Hopf
Equações de Fredholm
Factorização (Matemática)
Operadores integrais
title_short Regularity of Wiener-Hopf plus Hankel operators
title_full Regularity of Wiener-Hopf plus Hankel operators
title_fullStr Regularity of Wiener-Hopf plus Hankel operators
title_full_unstemmed Regularity of Wiener-Hopf plus Hankel operators
title_sort Regularity of Wiener-Hopf plus Hankel operators
author Silva, Anabela de Sousa e
author_facet Silva, Anabela de Sousa e
author_role author
dc.contributor.author.fl_str_mv Silva, Anabela de Sousa e
dc.subject.por.fl_str_mv Matemática
Operadores de Wiener-Hopf
Equações de Fredholm
Factorização (Matemática)
Operadores integrais
topic Matemática
Operadores de Wiener-Hopf
Equações de Fredholm
Factorização (Matemática)
Operadores integrais
description In this thesis we consider Wiener-Hopf-Hankel operators with Fourier symbols in the class of almost periodic, semi-almost periodic and piecewise almost periodic functions. In the first place, we consider Wiener-Hopf-Hankel operators acting between L2 Lebesgue spaces with possibly different Fourier matrix symbols in the Wiener-Hopf and in the Hankel operators. In the second place, we consider these operators with equal Fourier symbols and acting between weighted Lebesgue spaces Lp(R;w), where 1 < p < 1 and w belongs to a subclass of Muckenhoupt weights. In addition, singular integral operators with Carleman shift and almost periodic coefficients are also object of study. The main purpose of this thesis is to obtain regularity properties characterizations of those classes of operators. By regularity properties we mean those that depend on the kernel and cokernel of the operator. The main techniques used are the equivalence relations between operators and the factorization theory. An invertibility characterization for the Wiener-Hopf-Hankel operators with symbols belonging to the Wiener subclass of almost periodic functions APW is obtained, assuming that a particular matrix function admits a numerical range bounded away from zero and based on the values of a certain mean motion. For Wiener-Hopf-Hankel operators acting between L2-spaces and with possibly different AP symbols, criteria for the semi-Fredholm property and for one-sided and both-sided invertibility are obtained and the inverses for all possible cases are exhibited. For such results, a new type of AP factorization is introduced. Singular integral operators with Carleman shift and scalar almost periodic coefficients are also studied. Considering an auxiliar and simpler operator, and using appropriate factorizations, the dimensions of the kernels and cokernels of those operators are obtained. For Wiener-Hopf-Hankel operators with (possibly different) SAP and PAP matrix symbols and acting between L2-spaces, criteria for the Fredholm property are presented as well as the sum of the Fredholm indices of the Wiener-Hopf plus Hankel and Wiener-Hopf minus Hankel operators. By studying dependencies between different matrix Fourier symbols of Wiener-Hopf plus Hankel operators acting between L2-spaces, results about the kernel and cokernel of those operators are derived. For Wiener-Hopf-Hankel operators acting between weighted Lebesgue spaces, Lp(R;w), a study is made considering equal scalar Fourier symbols in the Wiener-Hopf and in the Hankel operators and belonging to the classes of APp;w, SAPp;w and PAPp;w. It is obtained an invertibility characterization for Wiener-Hopf plus Hankel operators with APp;w symbols. In the cases for which the Fourier symbols of the operators belong to SAPp;w and PAPp;w, it is obtained semi-Fredholm criteria for Wiener-Hopf-Hankel operators as well as formulas for the Fredholm indices of those operators.
publishDate 2011
dc.date.none.fl_str_mv 2011-12-14T00:00:00Z
2011-12-14
2013-02-05T15:48:38Z
dc.type.driver.fl_str_mv doctoral thesis
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/7936
TID:101255365
url http://hdl.handle.net/10773/7936
identifier_str_mv TID:101255365
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade de Aveiro
publisher.none.fl_str_mv Universidade de Aveiro
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833594008923799552