Multivariate GR&R through factor analysis
| Main Author: | |
|---|---|
| Publication Date: | 2020 |
| Other Authors: | , , , , |
| Format: | Article |
| Language: | eng |
| Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Download full: | http://hdl.handle.net/10773/28230 |
Summary: | Several measurement tasks present multivariate nature. In the cases with quality characteristics highly correlated within groups, but with a relatively small correlation between groups, the available multivariate GR&R methods are not suitable to provide a correct interpretation of the results. The present work presents a new multivariate GR&R approach through factor analysis. Factor analysis is a multivariate statistical method which focuses on the explanation of the covariance structure of the data. Through orthogonal rotation of the factors a suitable structure can be achieved with loadings easy to relate the variables to the factors. The proposed multivariate GR&R method through factor analysis is described and applied in the quality evaluation of holes obtained through helical milling process of AISI H13 hardened steel. The method succeeded in achieving a simple structure, with one factor related to the roughness outcomes and other related to the roundness ones, simplifying the gage capability evaluation. |
| id |
RCAP_aecec385660cb956172e84d7768e9c8d |
|---|---|
| oai_identifier_str |
oai:ria.ua.pt:10773/28230 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Multivariate GR&R through factor analysisMultivariate GR&RFactor analysisHelical millingRoughnessRoundnessSeveral measurement tasks present multivariate nature. In the cases with quality characteristics highly correlated within groups, but with a relatively small correlation between groups, the available multivariate GR&R methods are not suitable to provide a correct interpretation of the results. The present work presents a new multivariate GR&R approach through factor analysis. Factor analysis is a multivariate statistical method which focuses on the explanation of the covariance structure of the data. Through orthogonal rotation of the factors a suitable structure can be achieved with loadings easy to relate the variables to the factors. The proposed multivariate GR&R method through factor analysis is described and applied in the quality evaluation of holes obtained through helical milling process of AISI H13 hardened steel. The method succeeded in achieving a simple structure, with one factor related to the roughness outcomes and other related to the roundness ones, simplifying the gage capability evaluation.Elsevier2020-022020-02-01T00:00:00Z2021-02-28T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/28230eng0263-224110.1016/j.measurement.2019.107107Marques, Rafaela Aparecida MendonçaPereira, Robson Bruno DutraPeruchi, Rogério SantanaBrandão, Lincoln CardosoFerreira, João RobertoDavim, J. Pauloinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T04:25:02Zoai:ria.ua.pt:10773/28230Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:07:49.588736Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Multivariate GR&R through factor analysis |
| title |
Multivariate GR&R through factor analysis |
| spellingShingle |
Multivariate GR&R through factor analysis Marques, Rafaela Aparecida Mendonça Multivariate GR&R Factor analysis Helical milling Roughness Roundness |
| title_short |
Multivariate GR&R through factor analysis |
| title_full |
Multivariate GR&R through factor analysis |
| title_fullStr |
Multivariate GR&R through factor analysis |
| title_full_unstemmed |
Multivariate GR&R through factor analysis |
| title_sort |
Multivariate GR&R through factor analysis |
| author |
Marques, Rafaela Aparecida Mendonça |
| author_facet |
Marques, Rafaela Aparecida Mendonça Pereira, Robson Bruno Dutra Peruchi, Rogério Santana Brandão, Lincoln Cardoso Ferreira, João Roberto Davim, J. Paulo |
| author_role |
author |
| author2 |
Pereira, Robson Bruno Dutra Peruchi, Rogério Santana Brandão, Lincoln Cardoso Ferreira, João Roberto Davim, J. Paulo |
| author2_role |
author author author author author |
| dc.contributor.author.fl_str_mv |
Marques, Rafaela Aparecida Mendonça Pereira, Robson Bruno Dutra Peruchi, Rogério Santana Brandão, Lincoln Cardoso Ferreira, João Roberto Davim, J. Paulo |
| dc.subject.por.fl_str_mv |
Multivariate GR&R Factor analysis Helical milling Roughness Roundness |
| topic |
Multivariate GR&R Factor analysis Helical milling Roughness Roundness |
| description |
Several measurement tasks present multivariate nature. In the cases with quality characteristics highly correlated within groups, but with a relatively small correlation between groups, the available multivariate GR&R methods are not suitable to provide a correct interpretation of the results. The present work presents a new multivariate GR&R approach through factor analysis. Factor analysis is a multivariate statistical method which focuses on the explanation of the covariance structure of the data. Through orthogonal rotation of the factors a suitable structure can be achieved with loadings easy to relate the variables to the factors. The proposed multivariate GR&R method through factor analysis is described and applied in the quality evaluation of holes obtained through helical milling process of AISI H13 hardened steel. The method succeeded in achieving a simple structure, with one factor related to the roughness outcomes and other related to the roundness ones, simplifying the gage capability evaluation. |
| publishDate |
2020 |
| dc.date.none.fl_str_mv |
2020-02 2020-02-01T00:00:00Z 2021-02-28T00:00:00Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/28230 |
| url |
http://hdl.handle.net/10773/28230 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
0263-2241 10.1016/j.measurement.2019.107107 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier |
| publisher.none.fl_str_mv |
Elsevier |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833594316315951104 |