Multivariate GR&R through factor analysis

Bibliographic Details
Main Author: Marques, Rafaela Aparecida Mendonça
Publication Date: 2020
Other Authors: Pereira, Robson Bruno Dutra, Peruchi, Rogério Santana, Brandão, Lincoln Cardoso, Ferreira, João Roberto, Davim, J. Paulo
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10773/28230
Summary: Several measurement tasks present multivariate nature. In the cases with quality characteristics highly correlated within groups, but with a relatively small correlation between groups, the available multivariate GR&R methods are not suitable to provide a correct interpretation of the results. The present work presents a new multivariate GR&R approach through factor analysis. Factor analysis is a multivariate statistical method which focuses on the explanation of the covariance structure of the data. Through orthogonal rotation of the factors a suitable structure can be achieved with loadings easy to relate the variables to the factors. The proposed multivariate GR&R method through factor analysis is described and applied in the quality evaluation of holes obtained through helical milling process of AISI H13 hardened steel. The method succeeded in achieving a simple structure, with one factor related to the roughness outcomes and other related to the roundness ones, simplifying the gage capability evaluation.
id RCAP_aecec385660cb956172e84d7768e9c8d
oai_identifier_str oai:ria.ua.pt:10773/28230
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Multivariate GR&R through factor analysisMultivariate GR&RFactor analysisHelical millingRoughnessRoundnessSeveral measurement tasks present multivariate nature. In the cases with quality characteristics highly correlated within groups, but with a relatively small correlation between groups, the available multivariate GR&R methods are not suitable to provide a correct interpretation of the results. The present work presents a new multivariate GR&R approach through factor analysis. Factor analysis is a multivariate statistical method which focuses on the explanation of the covariance structure of the data. Through orthogonal rotation of the factors a suitable structure can be achieved with loadings easy to relate the variables to the factors. The proposed multivariate GR&R method through factor analysis is described and applied in the quality evaluation of holes obtained through helical milling process of AISI H13 hardened steel. The method succeeded in achieving a simple structure, with one factor related to the roughness outcomes and other related to the roundness ones, simplifying the gage capability evaluation.Elsevier2020-022020-02-01T00:00:00Z2021-02-28T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/28230eng0263-224110.1016/j.measurement.2019.107107Marques, Rafaela Aparecida MendonçaPereira, Robson Bruno DutraPeruchi, Rogério SantanaBrandão, Lincoln CardosoFerreira, João RobertoDavim, J. Pauloinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T04:25:02Zoai:ria.ua.pt:10773/28230Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:07:49.588736Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Multivariate GR&R through factor analysis
title Multivariate GR&R through factor analysis
spellingShingle Multivariate GR&R through factor analysis
Marques, Rafaela Aparecida Mendonça
Multivariate GR&R
Factor analysis
Helical milling
Roughness
Roundness
title_short Multivariate GR&R through factor analysis
title_full Multivariate GR&R through factor analysis
title_fullStr Multivariate GR&R through factor analysis
title_full_unstemmed Multivariate GR&R through factor analysis
title_sort Multivariate GR&R through factor analysis
author Marques, Rafaela Aparecida Mendonça
author_facet Marques, Rafaela Aparecida Mendonça
Pereira, Robson Bruno Dutra
Peruchi, Rogério Santana
Brandão, Lincoln Cardoso
Ferreira, João Roberto
Davim, J. Paulo
author_role author
author2 Pereira, Robson Bruno Dutra
Peruchi, Rogério Santana
Brandão, Lincoln Cardoso
Ferreira, João Roberto
Davim, J. Paulo
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Marques, Rafaela Aparecida Mendonça
Pereira, Robson Bruno Dutra
Peruchi, Rogério Santana
Brandão, Lincoln Cardoso
Ferreira, João Roberto
Davim, J. Paulo
dc.subject.por.fl_str_mv Multivariate GR&R
Factor analysis
Helical milling
Roughness
Roundness
topic Multivariate GR&R
Factor analysis
Helical milling
Roughness
Roundness
description Several measurement tasks present multivariate nature. In the cases with quality characteristics highly correlated within groups, but with a relatively small correlation between groups, the available multivariate GR&R methods are not suitable to provide a correct interpretation of the results. The present work presents a new multivariate GR&R approach through factor analysis. Factor analysis is a multivariate statistical method which focuses on the explanation of the covariance structure of the data. Through orthogonal rotation of the factors a suitable structure can be achieved with loadings easy to relate the variables to the factors. The proposed multivariate GR&R method through factor analysis is described and applied in the quality evaluation of holes obtained through helical milling process of AISI H13 hardened steel. The method succeeded in achieving a simple structure, with one factor related to the roughness outcomes and other related to the roundness ones, simplifying the gage capability evaluation.
publishDate 2020
dc.date.none.fl_str_mv 2020-02
2020-02-01T00:00:00Z
2021-02-28T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/28230
url http://hdl.handle.net/10773/28230
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0263-2241
10.1016/j.measurement.2019.107107
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833594316315951104