Pruning techniques for mixed ensembles of genetic programming models
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2018 |
| Outros Autores: | , , |
| Idioma: | eng |
| Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Texto Completo: | http://hdl.handle.net/10362/146339 |
Resumo: | Castelli, M., Gonçalves, I., Manzoni, L., & Vanneschi, L. (2018). Pruning techniques for mixed ensembles of genetic programming models. In M. Castelli, L. Sekanina, M. Zhang, S. Cagnoni, & P. García-Sánchez (Eds.), Genetic Programming : 21st European Conference, EuroGP 2018, Proceedings (pp. 52-67). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 10781 LNCS). Springer Verlag. DOI: 10.1007/978-3-319-77553-1_4 |
| id |
RCAP_ae2684deb1b9b3033b41382a765e149d |
|---|---|
| oai_identifier_str |
oai:run.unl.pt:10362/146339 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Pruning techniques for mixed ensembles of genetic programming modelsTheoretical Computer ScienceComputer Science(all)Castelli, M., Gonçalves, I., Manzoni, L., & Vanneschi, L. (2018). Pruning techniques for mixed ensembles of genetic programming models. In M. Castelli, L. Sekanina, M. Zhang, S. Cagnoni, & P. García-Sánchez (Eds.), Genetic Programming : 21st European Conference, EuroGP 2018, Proceedings (pp. 52-67). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 10781 LNCS). Springer Verlag. DOI: 10.1007/978-3-319-77553-1_4The objective of this paper is to define an effective strategy for building an ensemble of Genetic Programming (GP) models. Ensemble methods are widely used in machine learning due to their features: they average out biases, they reduce the variance and they usually generalize better than single models. Despite these advantages, building ensemble of GP models is not a well-developed topic in the evolutionary computation community. To fill this gap, we propose a strategy that blends individuals produced by standard syntax-based GP and individuals produced by geometric semantic genetic programming, one of the newest semantics-based method developed in GP. In fact, recent literature showed that combining syntax and semantics could improve the generalization ability of a GP model. Additionally, to improve the diversity of the GP models used to build up the ensemble, we propose different pruning criteria that are based on correlation and entropy, a commonly used measure in information theory. Experimental results, obtained over different complex problems, suggest that the pruning criteria based on correlation and entropy could be effective in improving the generalization ability of the ensemble model and in reducing the computational burden required to build it.Springer VerlagInformation Management Research Center (MagIC) - NOVA Information Management SchoolNOVA Information Management School (NOVA IMS)RUNCastelli, MauroGonçalves, IvoManzoni, LucaVanneschi, Leonardo2022-12-16T22:18:18Z2018-01-012018-01-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersion16application/pdfhttp://hdl.handle.net/10362/146339eng97833197755240302-9743PURE: 3938895https://doi.org/10.1007/978-3-319-77553-1_4info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T18:07:28Zoai:run.unl.pt:10362/146339Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:38:08.412520Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Pruning techniques for mixed ensembles of genetic programming models |
| title |
Pruning techniques for mixed ensembles of genetic programming models |
| spellingShingle |
Pruning techniques for mixed ensembles of genetic programming models Castelli, Mauro Theoretical Computer Science Computer Science(all) |
| title_short |
Pruning techniques for mixed ensembles of genetic programming models |
| title_full |
Pruning techniques for mixed ensembles of genetic programming models |
| title_fullStr |
Pruning techniques for mixed ensembles of genetic programming models |
| title_full_unstemmed |
Pruning techniques for mixed ensembles of genetic programming models |
| title_sort |
Pruning techniques for mixed ensembles of genetic programming models |
| author |
Castelli, Mauro |
| author_facet |
Castelli, Mauro Gonçalves, Ivo Manzoni, Luca Vanneschi, Leonardo |
| author_role |
author |
| author2 |
Gonçalves, Ivo Manzoni, Luca Vanneschi, Leonardo |
| author2_role |
author author author |
| dc.contributor.none.fl_str_mv |
Information Management Research Center (MagIC) - NOVA Information Management School NOVA Information Management School (NOVA IMS) RUN |
| dc.contributor.author.fl_str_mv |
Castelli, Mauro Gonçalves, Ivo Manzoni, Luca Vanneschi, Leonardo |
| dc.subject.por.fl_str_mv |
Theoretical Computer Science Computer Science(all) |
| topic |
Theoretical Computer Science Computer Science(all) |
| description |
Castelli, M., Gonçalves, I., Manzoni, L., & Vanneschi, L. (2018). Pruning techniques for mixed ensembles of genetic programming models. In M. Castelli, L. Sekanina, M. Zhang, S. Cagnoni, & P. García-Sánchez (Eds.), Genetic Programming : 21st European Conference, EuroGP 2018, Proceedings (pp. 52-67). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 10781 LNCS). Springer Verlag. DOI: 10.1007/978-3-319-77553-1_4 |
| publishDate |
2018 |
| dc.date.none.fl_str_mv |
2018-01-01 2018-01-01T00:00:00Z 2022-12-16T22:18:18Z |
| dc.type.driver.fl_str_mv |
conference object |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/146339 |
| url |
http://hdl.handle.net/10362/146339 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
9783319775524 0302-9743 PURE: 3938895 https://doi.org/10.1007/978-3-319-77553-1_4 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
16 application/pdf |
| dc.publisher.none.fl_str_mv |
Springer Verlag |
| publisher.none.fl_str_mv |
Springer Verlag |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833596847446294528 |