M6GP
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2024 |
| Outros Autores: | , , |
| Idioma: | eng |
| Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Texto Completo: | http://hdl.handle.net/10362/172920 |
Resumo: | Batista, J. E., Rodrigues, N. M., Vanneschi, L., & Silva, S. (2024). M6GP: Multiobjective Feature Engineering. In 2024 IEEE Congress on Evolutionary Computation (CEC) (pp. 1-8). Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/CEC60901.2024.10612107 --- This work was supported by FCT through the LASIGE (UIDB/00408/20203 and UIDP/00408/20204) and MagIC/NOVA IMS (UIDB/04l52/2020) research units, and PhD Grant 202l/05322/BD |
| id |
RCAP_ae20c9b7738776ad6d73b76e8cc0263a |
|---|---|
| oai_identifier_str |
oai:run.unl.pt:10362/172920 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
M6GPMultiobjective Feature EngineeringGenetic ProgrammingMultiobjective OptimizationFeature EngineeringExplainable AIInterpretabilityArtificial IntelligenceComputer Science ApplicationsComputer Vision and Pattern RecognitionComputational MathematicsControl and OptimizationBatista, J. E., Rodrigues, N. M., Vanneschi, L., & Silva, S. (2024). M6GP: Multiobjective Feature Engineering. In 2024 IEEE Congress on Evolutionary Computation (CEC) (pp. 1-8). Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/CEC60901.2024.10612107 --- This work was supported by FCT through the LASIGE (UIDB/00408/20203 and UIDP/00408/20204) and MagIC/NOVA IMS (UIDB/04l52/2020) research units, and PhD Grant 202l/05322/BDThe current trend in machine learning is to use powerful algorithms to induce complex predictive models that often fall under the category of “black-box models”. Thanks to this, there is also a growing interest in studying model explainabil-ity and interpretability so that human experts can understand, validate, and correct those models. With the objective of promoting the creation of inherently interpretable models, we present M6GP. This wrapper-based multi-objective automatic feature engineering algorithm combines key components of the M3GP and NSGA-II algorithms. Wrapping M6GP around another machine learning algorithm evolves a set of features optimized for this algorithm while potentially increasing its robustness. We compare our results with M3GP and M4GP, two ancestors from the same algorithm family, and verify that, by using a multi-objective approach, M6GP obtains equal or better results. In addition, by using complexity metrics on the list of objectives, the M6GP models come down to one-fifth of the size of the M3GP models, making them easier to read by comparison.Institute of Electrical and Electronics Engineers (IEEE)Information Management Research Center (MagIC) - NOVA Information Management SchoolNOVA Information Management School (NOVA IMS)RUNBatista, João EduardoRodrigues, Nuno MiguelVanneschi, LeonardoSilva, Sara20242026-08-08T00:00:00Z2024-01-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersion8application/pdfhttp://hdl.handle.net/10362/172920eng979-8-3503-0837-2PURE: 98688434https://doi.org/10.1109/CEC60901.2024.10612107info:eu-repo/semantics/embargoedAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-10-07T01:41:14Zoai:run.unl.pt:10362/172920Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T18:55:28.001261Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
M6GP Multiobjective Feature Engineering |
| title |
M6GP |
| spellingShingle |
M6GP Batista, João Eduardo Genetic Programming Multiobjective Optimization Feature Engineering Explainable AI Interpretability Artificial Intelligence Computer Science Applications Computer Vision and Pattern Recognition Computational Mathematics Control and Optimization |
| title_short |
M6GP |
| title_full |
M6GP |
| title_fullStr |
M6GP |
| title_full_unstemmed |
M6GP |
| title_sort |
M6GP |
| author |
Batista, João Eduardo |
| author_facet |
Batista, João Eduardo Rodrigues, Nuno Miguel Vanneschi, Leonardo Silva, Sara |
| author_role |
author |
| author2 |
Rodrigues, Nuno Miguel Vanneschi, Leonardo Silva, Sara |
| author2_role |
author author author |
| dc.contributor.none.fl_str_mv |
Information Management Research Center (MagIC) - NOVA Information Management School NOVA Information Management School (NOVA IMS) RUN |
| dc.contributor.author.fl_str_mv |
Batista, João Eduardo Rodrigues, Nuno Miguel Vanneschi, Leonardo Silva, Sara |
| dc.subject.por.fl_str_mv |
Genetic Programming Multiobjective Optimization Feature Engineering Explainable AI Interpretability Artificial Intelligence Computer Science Applications Computer Vision and Pattern Recognition Computational Mathematics Control and Optimization |
| topic |
Genetic Programming Multiobjective Optimization Feature Engineering Explainable AI Interpretability Artificial Intelligence Computer Science Applications Computer Vision and Pattern Recognition Computational Mathematics Control and Optimization |
| description |
Batista, J. E., Rodrigues, N. M., Vanneschi, L., & Silva, S. (2024). M6GP: Multiobjective Feature Engineering. In 2024 IEEE Congress on Evolutionary Computation (CEC) (pp. 1-8). Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/CEC60901.2024.10612107 --- This work was supported by FCT through the LASIGE (UIDB/00408/20203 and UIDP/00408/20204) and MagIC/NOVA IMS (UIDB/04l52/2020) research units, and PhD Grant 202l/05322/BD |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024 2024-01-01T00:00:00Z 2026-08-08T00:00:00Z |
| dc.type.driver.fl_str_mv |
conference object |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/172920 |
| url |
http://hdl.handle.net/10362/172920 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
979-8-3503-0837-2 PURE: 98688434 https://doi.org/10.1109/CEC60901.2024.10612107 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
| eu_rights_str_mv |
embargoedAccess |
| dc.format.none.fl_str_mv |
8 application/pdf |
| dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers (IEEE) |
| publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers (IEEE) |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833597757314564096 |