Refining direct cardiac reprogramming: modulation of mitochondrial metabolism and long non-coding RNAs

Detalhes bibliográficos
Autor(a) principal: Santos, Francisco José Furtado
Data de Publicação: 2024
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/10773/42070
Resumo: Cardiovascular diseases are among the leading causes of death worldwide. The associated pathology is characterized by loss of cardiomyocytes that eventually leads to heart failure. The mammalian neonatal heart possesses regenerative capacity, which is lost after birth when cardiomyocytes exit the cell cycle and shift their metabolism from glycolysis to OXPHOS. Besides bioenergetics, metabolites are important regulators of histone modifications, as they influence the activity of chromatin-modifying enzymes, thus linking metabolism, epigenetics and transcriptional regulation. Long non-coding RNAs (lncRNAs) have also emerged as critical regulators of gene expression. These RNA transcripts are devoid of coding potential, exhibit unique spatiotemporal patterns and have been implicated in heart development. Overexpressing cardiogenic transcription factors Mef2c, Gata4 and Tbx5 (collectively known as MGT) directly reprograms fibroblasts into induced cardiomyocytes (iCMs), providing means for replenishing the population of cardiomyocytes. This process, however, is stochastic and hampered by several barriers, including metabolic and epigenetic. Here, we show that the epigenetic transitions that occur during transdifferentiation of mouse fibroblasts into iCMs differ with age, possibly contributing to the lack of efficiency in adult cells. iCMs become increasingly engaged in mitochondrial respiration, but only those derived from embryonic cells remodel their mitochondrial network, with adult cells presenting higher levels of damaged mitochondria, possibly impacting the remodeling of the mitochondrial network. Promoting the clearance of damaged mitochondria, either by inducing mitophagy or dietary manipulations, improves reprogramming in adult cells, by a mechanism that might depend on ameliorating the quality and maturation of the mitochondrial network. This may result in the enhancement of OXPHOS and the availability of mitochondria-derived metabolites that can be used for metaboloepigenetic processes, thereby fine-tuning the transcription of not only cardiac-specific genes, but also those involved in mitochondrial dynamics and homeostasis. Furthermore, modulating the expression of lncRNA Phlda1-ot during direct cardiac reprogramming was shown to enhance generation of iCMs, possibly in a autophagy-inducing manner. highlighting the importance of autophagy during this process. In conclusion, the results presented in this thesis propose that modulation of metabolism and expression of lncRNAs both point to the regulation of autophagy, providing grounds for further investigation for improving direct cardiac reprogramming for regenerative purposes.
id RCAP_ad38f36f5eee36bb5cb3233dd5433d74
oai_identifier_str oai:ria.ua.pt:10773/42070
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Refining direct cardiac reprogramming: modulation of mitochondrial metabolism and long non-coding RNAsMetabolismCardiomyocytesFibroblastsDirect reprogrammingAgingEpigeneticsMitochondriaLong non-coding RNAsAutophagyRegenerative biologyCardiovascular diseases are among the leading causes of death worldwide. The associated pathology is characterized by loss of cardiomyocytes that eventually leads to heart failure. The mammalian neonatal heart possesses regenerative capacity, which is lost after birth when cardiomyocytes exit the cell cycle and shift their metabolism from glycolysis to OXPHOS. Besides bioenergetics, metabolites are important regulators of histone modifications, as they influence the activity of chromatin-modifying enzymes, thus linking metabolism, epigenetics and transcriptional regulation. Long non-coding RNAs (lncRNAs) have also emerged as critical regulators of gene expression. These RNA transcripts are devoid of coding potential, exhibit unique spatiotemporal patterns and have been implicated in heart development. Overexpressing cardiogenic transcription factors Mef2c, Gata4 and Tbx5 (collectively known as MGT) directly reprograms fibroblasts into induced cardiomyocytes (iCMs), providing means for replenishing the population of cardiomyocytes. This process, however, is stochastic and hampered by several barriers, including metabolic and epigenetic. Here, we show that the epigenetic transitions that occur during transdifferentiation of mouse fibroblasts into iCMs differ with age, possibly contributing to the lack of efficiency in adult cells. iCMs become increasingly engaged in mitochondrial respiration, but only those derived from embryonic cells remodel their mitochondrial network, with adult cells presenting higher levels of damaged mitochondria, possibly impacting the remodeling of the mitochondrial network. Promoting the clearance of damaged mitochondria, either by inducing mitophagy or dietary manipulations, improves reprogramming in adult cells, by a mechanism that might depend on ameliorating the quality and maturation of the mitochondrial network. This may result in the enhancement of OXPHOS and the availability of mitochondria-derived metabolites that can be used for metaboloepigenetic processes, thereby fine-tuning the transcription of not only cardiac-specific genes, but also those involved in mitochondrial dynamics and homeostasis. Furthermore, modulating the expression of lncRNA Phlda1-ot during direct cardiac reprogramming was shown to enhance generation of iCMs, possibly in a autophagy-inducing manner. highlighting the importance of autophagy during this process. In conclusion, the results presented in this thesis propose that modulation of metabolism and expression of lncRNAs both point to the regulation of autophagy, providing grounds for further investigation for improving direct cardiac reprogramming for regenerative purposes.As doenças cardiovasculares estão entre as principais causas de morte no Mundo, e a sua patologia está associada à perda de cardiomiócitos, resultando, eventualmente, em insuficiência cardíaca. O coração de mamífero neonatal possui capacidade regenerativa, a qual é perdida quando os cardiomiócitos saem do ciclo celular e alteram o seu metabolismo de glicólise para respiração mitocondrial. Além da sua importância a nível bioenergético, os metabolitos são também importantes reguladores de modificações das histonas, uma vez que influenciam a atividade de enzimas modificadoras da cromatina, ligando, assim, o metabolismo à epigenética e à regulação da expressão génica. Os RNAs longos não codificantes (lncRNAs) também são considerados importantes reguladores da expressão génica. Estas moléculas de RNA não codificam proteínas, exibem perfis de expressão únicos e têm sido associadas ao desenvolvimento cardíaco. A sobre-expressão dos fatores de transcrição cardíacos Mef2c, Gata4 e Tbx5 (colectivamente conhecidos como MGT) resulta na reprogramação directa de fibroblastos em cardiomiócitos induzidos (iCMs), que têm potencial para reporem a população de cardiomiócitos. No entanto, este processo é estocástico e afetado por diversas barreiras, entre as quais metabólicas e epigenéticas. Os nossos resultados indicam que as transições epigenéticas que ocorrem durante a reprogramação de fibroblastos de ratinho em iCMs diferem com a idade, contribuindo, possivelmente, para a menor eficiência observada em fibroblastos de adulto. Apesar de os iCMs exibirem uma maior dependência da respiração mitocondrial, apenas aqueles que derivam de fibroblastos embrionários reestruturam a sua rede mitocondrial. Por sua vez, os fibroblastos adultos apresentam uma acumulação de mitocôndrias danificadas, podendo afectar a reestruturação da rede mitocondrial nestas células. A remoção de mitocôndrias danificadas, quer por indução de mitofagia, quer por manipulações dietéticas, potencia o processo de reprogramação direta por um mecanismo que poderá depender de um melhoramento da qualidade e da maturação da rede mitocondrial. Com isto, um aumento na respiração mitocondrial poderá aumentar a quantidade de metabolitos derivados da mitocôndria que poderão ser usados em processos metaboloepigenéticos, regulando não só a expressão de genes cardíacos, mas também de genes envolvidos na dinâmica e homeostasia mitocondrial. Além disso, a manipulação da expressão do lncRNA Phlda1-ot promove a eficiência da reprogramação cardíaca direta, potencialmente por um mecanismo dependente da indução da autofagia. Assim, os resultados apresentados nesta tese sugerem que, tanto manipulações metabólicas, como aquelas que envolvem a expressão de lncRNAs, evidenciam a regulação da autofagia como um ponto em comum, possibilitando futuras investigações para melhorar o processo de reprogramação cardíaca direta para fins regenerativos.2024-07-01T08:40:17Z2024-05-15T00:00:00Z2024-05-15doctoral thesisinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10773/42070engSantos, Francisco José Furtadoinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-07-08T01:45:41Zoai:ria.ua.pt:10773/42070Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T18:36:27.667326Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Refining direct cardiac reprogramming: modulation of mitochondrial metabolism and long non-coding RNAs
title Refining direct cardiac reprogramming: modulation of mitochondrial metabolism and long non-coding RNAs
spellingShingle Refining direct cardiac reprogramming: modulation of mitochondrial metabolism and long non-coding RNAs
Santos, Francisco José Furtado
Metabolism
Cardiomyocytes
Fibroblasts
Direct reprogramming
Aging
Epigenetics
Mitochondria
Long non-coding RNAs
Autophagy
Regenerative biology
title_short Refining direct cardiac reprogramming: modulation of mitochondrial metabolism and long non-coding RNAs
title_full Refining direct cardiac reprogramming: modulation of mitochondrial metabolism and long non-coding RNAs
title_fullStr Refining direct cardiac reprogramming: modulation of mitochondrial metabolism and long non-coding RNAs
title_full_unstemmed Refining direct cardiac reprogramming: modulation of mitochondrial metabolism and long non-coding RNAs
title_sort Refining direct cardiac reprogramming: modulation of mitochondrial metabolism and long non-coding RNAs
author Santos, Francisco José Furtado
author_facet Santos, Francisco José Furtado
author_role author
dc.contributor.author.fl_str_mv Santos, Francisco José Furtado
dc.subject.por.fl_str_mv Metabolism
Cardiomyocytes
Fibroblasts
Direct reprogramming
Aging
Epigenetics
Mitochondria
Long non-coding RNAs
Autophagy
Regenerative biology
topic Metabolism
Cardiomyocytes
Fibroblasts
Direct reprogramming
Aging
Epigenetics
Mitochondria
Long non-coding RNAs
Autophagy
Regenerative biology
description Cardiovascular diseases are among the leading causes of death worldwide. The associated pathology is characterized by loss of cardiomyocytes that eventually leads to heart failure. The mammalian neonatal heart possesses regenerative capacity, which is lost after birth when cardiomyocytes exit the cell cycle and shift their metabolism from glycolysis to OXPHOS. Besides bioenergetics, metabolites are important regulators of histone modifications, as they influence the activity of chromatin-modifying enzymes, thus linking metabolism, epigenetics and transcriptional regulation. Long non-coding RNAs (lncRNAs) have also emerged as critical regulators of gene expression. These RNA transcripts are devoid of coding potential, exhibit unique spatiotemporal patterns and have been implicated in heart development. Overexpressing cardiogenic transcription factors Mef2c, Gata4 and Tbx5 (collectively known as MGT) directly reprograms fibroblasts into induced cardiomyocytes (iCMs), providing means for replenishing the population of cardiomyocytes. This process, however, is stochastic and hampered by several barriers, including metabolic and epigenetic. Here, we show that the epigenetic transitions that occur during transdifferentiation of mouse fibroblasts into iCMs differ with age, possibly contributing to the lack of efficiency in adult cells. iCMs become increasingly engaged in mitochondrial respiration, but only those derived from embryonic cells remodel their mitochondrial network, with adult cells presenting higher levels of damaged mitochondria, possibly impacting the remodeling of the mitochondrial network. Promoting the clearance of damaged mitochondria, either by inducing mitophagy or dietary manipulations, improves reprogramming in adult cells, by a mechanism that might depend on ameliorating the quality and maturation of the mitochondrial network. This may result in the enhancement of OXPHOS and the availability of mitochondria-derived metabolites that can be used for metaboloepigenetic processes, thereby fine-tuning the transcription of not only cardiac-specific genes, but also those involved in mitochondrial dynamics and homeostasis. Furthermore, modulating the expression of lncRNA Phlda1-ot during direct cardiac reprogramming was shown to enhance generation of iCMs, possibly in a autophagy-inducing manner. highlighting the importance of autophagy during this process. In conclusion, the results presented in this thesis propose that modulation of metabolism and expression of lncRNAs both point to the regulation of autophagy, providing grounds for further investigation for improving direct cardiac reprogramming for regenerative purposes.
publishDate 2024
dc.date.none.fl_str_mv 2024-07-01T08:40:17Z
2024-05-15T00:00:00Z
2024-05-15
dc.type.driver.fl_str_mv doctoral thesis
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/42070
url http://hdl.handle.net/10773/42070
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833597539912253440