Refining direct cardiac reprogramming: modulation of mitochondrial metabolism and long non-coding RNAs
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2024 |
| Idioma: | eng |
| Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Texto Completo: | http://hdl.handle.net/10773/42070 |
Resumo: | Cardiovascular diseases are among the leading causes of death worldwide. The associated pathology is characterized by loss of cardiomyocytes that eventually leads to heart failure. The mammalian neonatal heart possesses regenerative capacity, which is lost after birth when cardiomyocytes exit the cell cycle and shift their metabolism from glycolysis to OXPHOS. Besides bioenergetics, metabolites are important regulators of histone modifications, as they influence the activity of chromatin-modifying enzymes, thus linking metabolism, epigenetics and transcriptional regulation. Long non-coding RNAs (lncRNAs) have also emerged as critical regulators of gene expression. These RNA transcripts are devoid of coding potential, exhibit unique spatiotemporal patterns and have been implicated in heart development. Overexpressing cardiogenic transcription factors Mef2c, Gata4 and Tbx5 (collectively known as MGT) directly reprograms fibroblasts into induced cardiomyocytes (iCMs), providing means for replenishing the population of cardiomyocytes. This process, however, is stochastic and hampered by several barriers, including metabolic and epigenetic. Here, we show that the epigenetic transitions that occur during transdifferentiation of mouse fibroblasts into iCMs differ with age, possibly contributing to the lack of efficiency in adult cells. iCMs become increasingly engaged in mitochondrial respiration, but only those derived from embryonic cells remodel their mitochondrial network, with adult cells presenting higher levels of damaged mitochondria, possibly impacting the remodeling of the mitochondrial network. Promoting the clearance of damaged mitochondria, either by inducing mitophagy or dietary manipulations, improves reprogramming in adult cells, by a mechanism that might depend on ameliorating the quality and maturation of the mitochondrial network. This may result in the enhancement of OXPHOS and the availability of mitochondria-derived metabolites that can be used for metaboloepigenetic processes, thereby fine-tuning the transcription of not only cardiac-specific genes, but also those involved in mitochondrial dynamics and homeostasis. Furthermore, modulating the expression of lncRNA Phlda1-ot during direct cardiac reprogramming was shown to enhance generation of iCMs, possibly in a autophagy-inducing manner. highlighting the importance of autophagy during this process. In conclusion, the results presented in this thesis propose that modulation of metabolism and expression of lncRNAs both point to the regulation of autophagy, providing grounds for further investigation for improving direct cardiac reprogramming for regenerative purposes. |
| id |
RCAP_ad38f36f5eee36bb5cb3233dd5433d74 |
|---|---|
| oai_identifier_str |
oai:ria.ua.pt:10773/42070 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Refining direct cardiac reprogramming: modulation of mitochondrial metabolism and long non-coding RNAsMetabolismCardiomyocytesFibroblastsDirect reprogrammingAgingEpigeneticsMitochondriaLong non-coding RNAsAutophagyRegenerative biologyCardiovascular diseases are among the leading causes of death worldwide. The associated pathology is characterized by loss of cardiomyocytes that eventually leads to heart failure. The mammalian neonatal heart possesses regenerative capacity, which is lost after birth when cardiomyocytes exit the cell cycle and shift their metabolism from glycolysis to OXPHOS. Besides bioenergetics, metabolites are important regulators of histone modifications, as they influence the activity of chromatin-modifying enzymes, thus linking metabolism, epigenetics and transcriptional regulation. Long non-coding RNAs (lncRNAs) have also emerged as critical regulators of gene expression. These RNA transcripts are devoid of coding potential, exhibit unique spatiotemporal patterns and have been implicated in heart development. Overexpressing cardiogenic transcription factors Mef2c, Gata4 and Tbx5 (collectively known as MGT) directly reprograms fibroblasts into induced cardiomyocytes (iCMs), providing means for replenishing the population of cardiomyocytes. This process, however, is stochastic and hampered by several barriers, including metabolic and epigenetic. Here, we show that the epigenetic transitions that occur during transdifferentiation of mouse fibroblasts into iCMs differ with age, possibly contributing to the lack of efficiency in adult cells. iCMs become increasingly engaged in mitochondrial respiration, but only those derived from embryonic cells remodel their mitochondrial network, with adult cells presenting higher levels of damaged mitochondria, possibly impacting the remodeling of the mitochondrial network. Promoting the clearance of damaged mitochondria, either by inducing mitophagy or dietary manipulations, improves reprogramming in adult cells, by a mechanism that might depend on ameliorating the quality and maturation of the mitochondrial network. This may result in the enhancement of OXPHOS and the availability of mitochondria-derived metabolites that can be used for metaboloepigenetic processes, thereby fine-tuning the transcription of not only cardiac-specific genes, but also those involved in mitochondrial dynamics and homeostasis. Furthermore, modulating the expression of lncRNA Phlda1-ot during direct cardiac reprogramming was shown to enhance generation of iCMs, possibly in a autophagy-inducing manner. highlighting the importance of autophagy during this process. In conclusion, the results presented in this thesis propose that modulation of metabolism and expression of lncRNAs both point to the regulation of autophagy, providing grounds for further investigation for improving direct cardiac reprogramming for regenerative purposes.As doenças cardiovasculares estão entre as principais causas de morte no Mundo, e a sua patologia está associada à perda de cardiomiócitos, resultando, eventualmente, em insuficiência cardíaca. O coração de mamífero neonatal possui capacidade regenerativa, a qual é perdida quando os cardiomiócitos saem do ciclo celular e alteram o seu metabolismo de glicólise para respiração mitocondrial. Além da sua importância a nível bioenergético, os metabolitos são também importantes reguladores de modificações das histonas, uma vez que influenciam a atividade de enzimas modificadoras da cromatina, ligando, assim, o metabolismo à epigenética e à regulação da expressão génica. Os RNAs longos não codificantes (lncRNAs) também são considerados importantes reguladores da expressão génica. Estas moléculas de RNA não codificam proteínas, exibem perfis de expressão únicos e têm sido associadas ao desenvolvimento cardíaco. A sobre-expressão dos fatores de transcrição cardíacos Mef2c, Gata4 e Tbx5 (colectivamente conhecidos como MGT) resulta na reprogramação directa de fibroblastos em cardiomiócitos induzidos (iCMs), que têm potencial para reporem a população de cardiomiócitos. No entanto, este processo é estocástico e afetado por diversas barreiras, entre as quais metabólicas e epigenéticas. Os nossos resultados indicam que as transições epigenéticas que ocorrem durante a reprogramação de fibroblastos de ratinho em iCMs diferem com a idade, contribuindo, possivelmente, para a menor eficiência observada em fibroblastos de adulto. Apesar de os iCMs exibirem uma maior dependência da respiração mitocondrial, apenas aqueles que derivam de fibroblastos embrionários reestruturam a sua rede mitocondrial. Por sua vez, os fibroblastos adultos apresentam uma acumulação de mitocôndrias danificadas, podendo afectar a reestruturação da rede mitocondrial nestas células. A remoção de mitocôndrias danificadas, quer por indução de mitofagia, quer por manipulações dietéticas, potencia o processo de reprogramação direta por um mecanismo que poderá depender de um melhoramento da qualidade e da maturação da rede mitocondrial. Com isto, um aumento na respiração mitocondrial poderá aumentar a quantidade de metabolitos derivados da mitocôndria que poderão ser usados em processos metaboloepigenéticos, regulando não só a expressão de genes cardíacos, mas também de genes envolvidos na dinâmica e homeostasia mitocondrial. Além disso, a manipulação da expressão do lncRNA Phlda1-ot promove a eficiência da reprogramação cardíaca direta, potencialmente por um mecanismo dependente da indução da autofagia. Assim, os resultados apresentados nesta tese sugerem que, tanto manipulações metabólicas, como aquelas que envolvem a expressão de lncRNAs, evidenciam a regulação da autofagia como um ponto em comum, possibilitando futuras investigações para melhorar o processo de reprogramação cardíaca direta para fins regenerativos.2024-07-01T08:40:17Z2024-05-15T00:00:00Z2024-05-15doctoral thesisinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10773/42070engSantos, Francisco José Furtadoinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-07-08T01:45:41Zoai:ria.ua.pt:10773/42070Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T18:36:27.667326Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Refining direct cardiac reprogramming: modulation of mitochondrial metabolism and long non-coding RNAs |
| title |
Refining direct cardiac reprogramming: modulation of mitochondrial metabolism and long non-coding RNAs |
| spellingShingle |
Refining direct cardiac reprogramming: modulation of mitochondrial metabolism and long non-coding RNAs Santos, Francisco José Furtado Metabolism Cardiomyocytes Fibroblasts Direct reprogramming Aging Epigenetics Mitochondria Long non-coding RNAs Autophagy Regenerative biology |
| title_short |
Refining direct cardiac reprogramming: modulation of mitochondrial metabolism and long non-coding RNAs |
| title_full |
Refining direct cardiac reprogramming: modulation of mitochondrial metabolism and long non-coding RNAs |
| title_fullStr |
Refining direct cardiac reprogramming: modulation of mitochondrial metabolism and long non-coding RNAs |
| title_full_unstemmed |
Refining direct cardiac reprogramming: modulation of mitochondrial metabolism and long non-coding RNAs |
| title_sort |
Refining direct cardiac reprogramming: modulation of mitochondrial metabolism and long non-coding RNAs |
| author |
Santos, Francisco José Furtado |
| author_facet |
Santos, Francisco José Furtado |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Santos, Francisco José Furtado |
| dc.subject.por.fl_str_mv |
Metabolism Cardiomyocytes Fibroblasts Direct reprogramming Aging Epigenetics Mitochondria Long non-coding RNAs Autophagy Regenerative biology |
| topic |
Metabolism Cardiomyocytes Fibroblasts Direct reprogramming Aging Epigenetics Mitochondria Long non-coding RNAs Autophagy Regenerative biology |
| description |
Cardiovascular diseases are among the leading causes of death worldwide. The associated pathology is characterized by loss of cardiomyocytes that eventually leads to heart failure. The mammalian neonatal heart possesses regenerative capacity, which is lost after birth when cardiomyocytes exit the cell cycle and shift their metabolism from glycolysis to OXPHOS. Besides bioenergetics, metabolites are important regulators of histone modifications, as they influence the activity of chromatin-modifying enzymes, thus linking metabolism, epigenetics and transcriptional regulation. Long non-coding RNAs (lncRNAs) have also emerged as critical regulators of gene expression. These RNA transcripts are devoid of coding potential, exhibit unique spatiotemporal patterns and have been implicated in heart development. Overexpressing cardiogenic transcription factors Mef2c, Gata4 and Tbx5 (collectively known as MGT) directly reprograms fibroblasts into induced cardiomyocytes (iCMs), providing means for replenishing the population of cardiomyocytes. This process, however, is stochastic and hampered by several barriers, including metabolic and epigenetic. Here, we show that the epigenetic transitions that occur during transdifferentiation of mouse fibroblasts into iCMs differ with age, possibly contributing to the lack of efficiency in adult cells. iCMs become increasingly engaged in mitochondrial respiration, but only those derived from embryonic cells remodel their mitochondrial network, with adult cells presenting higher levels of damaged mitochondria, possibly impacting the remodeling of the mitochondrial network. Promoting the clearance of damaged mitochondria, either by inducing mitophagy or dietary manipulations, improves reprogramming in adult cells, by a mechanism that might depend on ameliorating the quality and maturation of the mitochondrial network. This may result in the enhancement of OXPHOS and the availability of mitochondria-derived metabolites that can be used for metaboloepigenetic processes, thereby fine-tuning the transcription of not only cardiac-specific genes, but also those involved in mitochondrial dynamics and homeostasis. Furthermore, modulating the expression of lncRNA Phlda1-ot during direct cardiac reprogramming was shown to enhance generation of iCMs, possibly in a autophagy-inducing manner. highlighting the importance of autophagy during this process. In conclusion, the results presented in this thesis propose that modulation of metabolism and expression of lncRNAs both point to the regulation of autophagy, providing grounds for further investigation for improving direct cardiac reprogramming for regenerative purposes. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-07-01T08:40:17Z 2024-05-15T00:00:00Z 2024-05-15 |
| dc.type.driver.fl_str_mv |
doctoral thesis |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/42070 |
| url |
http://hdl.handle.net/10773/42070 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833597539912253440 |