Predicting metabolic fluxes from omics data via machine learning
| Main Author: | |
|---|---|
| Publication Date: | 2023 |
| Other Authors: | , |
| Format: | Article |
| Language: | eng |
| Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Download full: | http://hdl.handle.net/10362/162653 |
Summary: | The authors also wish to acknowledge the European Union's Horizon BioLaMer project under grant agreement number [ 101099487 ]. Publisher Copyright: © 2023 The Authors |
| id |
RCAP_ac3046e7fdb83e1d0262f598cce4591f |
|---|---|
| oai_identifier_str |
oai:run.unl.pt:10362/162653 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Predicting metabolic fluxes from omics data via machine learningMoving from knowledge-driven towards data-driven approachesFlux balance analysisGenome-scale modelsMetabolic fluxesOmics dataSupervised machine learningSystems biologyBiotechnologyBiophysicsStructural BiologyBiochemistryGeneticsComputer Science ApplicationsThe authors also wish to acknowledge the European Union's Horizon BioLaMer project under grant agreement number [ 101099487 ]. Publisher Copyright: © 2023 The AuthorsThe accurate prediction of phenotypes in microorganisms is a main challenge for systems biology. Genome-scale models (GEMs) are a widely used mathematical formalism for predicting metabolic fluxes using constraint-based modeling methods such as flux balance analysis (FBA). However, they require prior knowledge of the metabolic network of an organism and appropriate objective functions, often hampering the prediction of metabolic fluxes under different conditions. Moreover, the integration of omics data to improve the accuracy of phenotype predictions in different physiological states is still in its infancy. Here, we present a novel approach for predicting fluxes under various conditions. We explore the use of supervised machine learning (ML) models using transcriptomics and/or proteomics data and compare their performance against the standard parsimonious FBA (pFBA) approach using case studies of Escherichia coli organism as an example. Our results show that the proposed omics-based ML approach is promising to predict both internal and external metabolic fluxes with smaller prediction errors in comparison to the pFBA approach. The code, data, and detailed results are available at the project's repository [1].LAQV@REQUIMTEDQ - Departamento de QuímicaRUNGonçalves, Daniel M.Henriques, RuiCosta, Rafael S.2024-01-22T22:55:37Z2023-10-172023-10-17T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article14application/pdfhttp://hdl.handle.net/10362/162653eng2001-0370PURE: 81977599https://doi.org/10.1016/j.csbj.2023.10.002info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T18:17:39Zoai:run.unl.pt:10362/162653Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:48:09.195126Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Predicting metabolic fluxes from omics data via machine learning Moving from knowledge-driven towards data-driven approaches |
| title |
Predicting metabolic fluxes from omics data via machine learning |
| spellingShingle |
Predicting metabolic fluxes from omics data via machine learning Gonçalves, Daniel M. Flux balance analysis Genome-scale models Metabolic fluxes Omics data Supervised machine learning Systems biology Biotechnology Biophysics Structural Biology Biochemistry Genetics Computer Science Applications |
| title_short |
Predicting metabolic fluxes from omics data via machine learning |
| title_full |
Predicting metabolic fluxes from omics data via machine learning |
| title_fullStr |
Predicting metabolic fluxes from omics data via machine learning |
| title_full_unstemmed |
Predicting metabolic fluxes from omics data via machine learning |
| title_sort |
Predicting metabolic fluxes from omics data via machine learning |
| author |
Gonçalves, Daniel M. |
| author_facet |
Gonçalves, Daniel M. Henriques, Rui Costa, Rafael S. |
| author_role |
author |
| author2 |
Henriques, Rui Costa, Rafael S. |
| author2_role |
author author |
| dc.contributor.none.fl_str_mv |
LAQV@REQUIMTE DQ - Departamento de Química RUN |
| dc.contributor.author.fl_str_mv |
Gonçalves, Daniel M. Henriques, Rui Costa, Rafael S. |
| dc.subject.por.fl_str_mv |
Flux balance analysis Genome-scale models Metabolic fluxes Omics data Supervised machine learning Systems biology Biotechnology Biophysics Structural Biology Biochemistry Genetics Computer Science Applications |
| topic |
Flux balance analysis Genome-scale models Metabolic fluxes Omics data Supervised machine learning Systems biology Biotechnology Biophysics Structural Biology Biochemistry Genetics Computer Science Applications |
| description |
The authors also wish to acknowledge the European Union's Horizon BioLaMer project under grant agreement number [ 101099487 ]. Publisher Copyright: © 2023 The Authors |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-10-17 2023-10-17T00:00:00Z 2024-01-22T22:55:37Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/162653 |
| url |
http://hdl.handle.net/10362/162653 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
2001-0370 PURE: 81977599 https://doi.org/10.1016/j.csbj.2023.10.002 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
14 application/pdf |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833596973734690816 |