Gait event detection in controlled and real-life situations: repeated measures from healthy subjects
| Main Author: | |
|---|---|
| Publication Date: | 2018 |
| Other Authors: | , , , |
| Format: | Article |
| Language: | eng |
| Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Download full: | http://hdl.handle.net/1822/71231 |
Summary: | A benchmark and time-effective computational method is needed to assess human gait events in real-life walking situations using few sensors to be easily reproducible. This paper fosters a reliable gait event detection system that can operate at diverse gait speeds and on diverse real-life terrains by detecting several gait events in real time. This detection only relies on the foot angular velocity measured by a wearable gyroscope mounted in the foot to facilitate its integration for daily and repeated use. To operate as a benchmark tool, the proposed detection system endows an adaptive computational method by applying a finite-state machine based on heuristic decision rules dependent on adaptive thresholds. Repeated measurements from 11 healthy subjects (28.27 +/- 4.17 years) were acquired in controlled situations through a treadmill at different speeds (from 1.5 to 4.5 km/h) and slopes (from 0% to 10%). This validation also includes heterogeneous gait patterns from nine healthy subjects (27 +/- 7.35 years) monitored at three self-selected paces (from 1 +/- 0.2 to 2 +/- 0.18 m/s) during forward walking on flat, rough, and inclined surfaces and climbing staircases. The proposed method was significantly more accurate (p > 0.9925) and time effective (< 30.53 +/- 9.88 ms, p > 0.9314) in a benchmarking analysis with a state-of-the-art method during 5657 steps. Heel strike was the gait event most accurately detected under controlled (accuracy of 100%) and real-life situations (accuracy > 96.98%). Misdetection was more pronounced in middle mid swing (accuracy > 90.12%). The lower computational load, together with an improved performance, makes this detection system suitable for quantitative benchmarking in the locomotor rehabilitation field. |
| id |
RCAP_abd54f88c3cfd88ae2666b63d299f724 |
|---|---|
| oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/71231 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Gait event detection in controlled and real-life situations: repeated measures from healthy subjectsHuman gait analysisreal-time gait event detectionadaptive computational methodswearable inertial sensorsdaily locomotion activitiesEngenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaScience & TechnologyA benchmark and time-effective computational method is needed to assess human gait events in real-life walking situations using few sensors to be easily reproducible. This paper fosters a reliable gait event detection system that can operate at diverse gait speeds and on diverse real-life terrains by detecting several gait events in real time. This detection only relies on the foot angular velocity measured by a wearable gyroscope mounted in the foot to facilitate its integration for daily and repeated use. To operate as a benchmark tool, the proposed detection system endows an adaptive computational method by applying a finite-state machine based on heuristic decision rules dependent on adaptive thresholds. Repeated measurements from 11 healthy subjects (28.27 +/- 4.17 years) were acquired in controlled situations through a treadmill at different speeds (from 1.5 to 4.5 km/h) and slopes (from 0% to 10%). This validation also includes heterogeneous gait patterns from nine healthy subjects (27 +/- 7.35 years) monitored at three self-selected paces (from 1 +/- 0.2 to 2 +/- 0.18 m/s) during forward walking on flat, rough, and inclined surfaces and climbing staircases. The proposed method was significantly more accurate (p > 0.9925) and time effective (< 30.53 +/- 9.88 ms, p > 0.9314) in a benchmarking analysis with a state-of-the-art method during 5657 steps. Heel strike was the gait event most accurately detected under controlled (accuracy of 100%) and real-life situations (accuracy > 96.98%). Misdetection was more pronounced in middle mid swing (accuracy > 90.12%). The lower computational load, together with an improved performance, makes this detection system suitable for quantitative benchmarking in the locomotor rehabilitation field.This work has been supported in part by the Fundacao para a Ciencia e Tecnologia (FCT) with the Reference Scholarship under Grant SFRH/BD/108309/2015, by the Reference Project under Grant UID/EEA/04436/2013, and part by the FEDER Funds through the COMPETE 2020-Programa Operacional Competitividade e Internacionalizacao (POCI)-with the Reference Project under Grant POCI-01-0145-FEDER-006941, and in part by Spanish Ministry of Economy and Competitiveness Grant RYC-2014-16613.IEEEUniversidade do MinhoFigueiredo, JoanaFelix, PauloCosta, LuisMoreno, Juan C.Santos, Cristina20182018-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/71231eng1534-43201558-021010.1109/TNSRE.2018.286809430334739https://ieeexplore.ieee.org/document/8452990info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T07:36:52Zoai:repositorium.sdum.uminho.pt:1822/71231Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T16:33:16.464333Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Gait event detection in controlled and real-life situations: repeated measures from healthy subjects |
| title |
Gait event detection in controlled and real-life situations: repeated measures from healthy subjects |
| spellingShingle |
Gait event detection in controlled and real-life situations: repeated measures from healthy subjects Figueiredo, Joana Human gait analysis real-time gait event detection adaptive computational methods wearable inertial sensors daily locomotion activities Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática Science & Technology |
| title_short |
Gait event detection in controlled and real-life situations: repeated measures from healthy subjects |
| title_full |
Gait event detection in controlled and real-life situations: repeated measures from healthy subjects |
| title_fullStr |
Gait event detection in controlled and real-life situations: repeated measures from healthy subjects |
| title_full_unstemmed |
Gait event detection in controlled and real-life situations: repeated measures from healthy subjects |
| title_sort |
Gait event detection in controlled and real-life situations: repeated measures from healthy subjects |
| author |
Figueiredo, Joana |
| author_facet |
Figueiredo, Joana Felix, Paulo Costa, Luis Moreno, Juan C. Santos, Cristina |
| author_role |
author |
| author2 |
Felix, Paulo Costa, Luis Moreno, Juan C. Santos, Cristina |
| author2_role |
author author author author |
| dc.contributor.none.fl_str_mv |
Universidade do Minho |
| dc.contributor.author.fl_str_mv |
Figueiredo, Joana Felix, Paulo Costa, Luis Moreno, Juan C. Santos, Cristina |
| dc.subject.por.fl_str_mv |
Human gait analysis real-time gait event detection adaptive computational methods wearable inertial sensors daily locomotion activities Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática Science & Technology |
| topic |
Human gait analysis real-time gait event detection adaptive computational methods wearable inertial sensors daily locomotion activities Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática Science & Technology |
| description |
A benchmark and time-effective computational method is needed to assess human gait events in real-life walking situations using few sensors to be easily reproducible. This paper fosters a reliable gait event detection system that can operate at diverse gait speeds and on diverse real-life terrains by detecting several gait events in real time. This detection only relies on the foot angular velocity measured by a wearable gyroscope mounted in the foot to facilitate its integration for daily and repeated use. To operate as a benchmark tool, the proposed detection system endows an adaptive computational method by applying a finite-state machine based on heuristic decision rules dependent on adaptive thresholds. Repeated measurements from 11 healthy subjects (28.27 +/- 4.17 years) were acquired in controlled situations through a treadmill at different speeds (from 1.5 to 4.5 km/h) and slopes (from 0% to 10%). This validation also includes heterogeneous gait patterns from nine healthy subjects (27 +/- 7.35 years) monitored at three self-selected paces (from 1 +/- 0.2 to 2 +/- 0.18 m/s) during forward walking on flat, rough, and inclined surfaces and climbing staircases. The proposed method was significantly more accurate (p > 0.9925) and time effective (< 30.53 +/- 9.88 ms, p > 0.9314) in a benchmarking analysis with a state-of-the-art method during 5657 steps. Heel strike was the gait event most accurately detected under controlled (accuracy of 100%) and real-life situations (accuracy > 96.98%). Misdetection was more pronounced in middle mid swing (accuracy > 90.12%). The lower computational load, together with an improved performance, makes this detection system suitable for quantitative benchmarking in the locomotor rehabilitation field. |
| publishDate |
2018 |
| dc.date.none.fl_str_mv |
2018 2018-01-01T00:00:00Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/71231 |
| url |
http://hdl.handle.net/1822/71231 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
1534-4320 1558-0210 10.1109/TNSRE.2018.2868094 30334739 https://ieeexplore.ieee.org/document/8452990 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
IEEE |
| publisher.none.fl_str_mv |
IEEE |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833596019268386816 |