Fast-DENSER: Fast Deep Evolutionary Network Structured Representation
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2021 |
| Outros Autores: | , , |
| Tipo de documento: | Artigo |
| Idioma: | eng |
| Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Texto Completo: | https://hdl.handle.net/10316/100856 https://doi.org/10.1016/j.softx.2021.100694 |
Resumo: | This paper introduces a grammar-based general purpose framework for the automatic search and deployment of potentially Deep Artificial Neural Networks (DANNs). The approach is known as Fast Deep Evolutionary Network Structured Representation (Fast-DENSER) and is capable of simultaneously optimising the topology, learning strategy and any other required hyper-parameters (e.g., data pre-processing or augmentation). Fast-DENSER has been successfully applied to numerous object recognition tasks, with the generation of Convolutional Neural Networks (CNNs). The code is developed and tested in Python3, and made available as a library. A simple and easy to follow example is described for the automatic search of CNNs for the Fashion-MNIST benchmark |
| id |
RCAP_abb6b3611f5b25d6d61955f4d59b3968 |
|---|---|
| oai_identifier_str |
oai:estudogeral.uc.pt:10316/100856 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Fast-DENSER: Fast Deep Evolutionary Network Structured RepresentationArtificial Neural NetworksAutomated machine learningNeuroEvolutionThis paper introduces a grammar-based general purpose framework for the automatic search and deployment of potentially Deep Artificial Neural Networks (DANNs). The approach is known as Fast Deep Evolutionary Network Structured Representation (Fast-DENSER) and is capable of simultaneously optimising the topology, learning strategy and any other required hyper-parameters (e.g., data pre-processing or augmentation). Fast-DENSER has been successfully applied to numerous object recognition tasks, with the generation of Convolutional Neural Networks (CNNs). The code is developed and tested in Python3, and made available as a library. A simple and easy to follow example is described for the automatic search of CNNs for the Fashion-MNIST benchmarkFEDER Regional Operational Program Centro 2020 and FCT Grant No: SFRH/BD/114865/2016.2021info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttps://hdl.handle.net/10316/100856https://hdl.handle.net/10316/100856https://doi.org/10.1016/j.softx.2021.100694eng23527110Assunção, FilipeLourenço, NunoRibeiro, BernardeteMachado, Penousalinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-06T13:05:39Zoai:estudogeral.uc.pt:10316/100856Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T05:50:02.518310Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Fast-DENSER: Fast Deep Evolutionary Network Structured Representation |
| title |
Fast-DENSER: Fast Deep Evolutionary Network Structured Representation |
| spellingShingle |
Fast-DENSER: Fast Deep Evolutionary Network Structured Representation Assunção, Filipe Artificial Neural Networks Automated machine learning NeuroEvolution |
| title_short |
Fast-DENSER: Fast Deep Evolutionary Network Structured Representation |
| title_full |
Fast-DENSER: Fast Deep Evolutionary Network Structured Representation |
| title_fullStr |
Fast-DENSER: Fast Deep Evolutionary Network Structured Representation |
| title_full_unstemmed |
Fast-DENSER: Fast Deep Evolutionary Network Structured Representation |
| title_sort |
Fast-DENSER: Fast Deep Evolutionary Network Structured Representation |
| author |
Assunção, Filipe |
| author_facet |
Assunção, Filipe Lourenço, Nuno Ribeiro, Bernardete Machado, Penousal |
| author_role |
author |
| author2 |
Lourenço, Nuno Ribeiro, Bernardete Machado, Penousal |
| author2_role |
author author author |
| dc.contributor.author.fl_str_mv |
Assunção, Filipe Lourenço, Nuno Ribeiro, Bernardete Machado, Penousal |
| dc.subject.por.fl_str_mv |
Artificial Neural Networks Automated machine learning NeuroEvolution |
| topic |
Artificial Neural Networks Automated machine learning NeuroEvolution |
| description |
This paper introduces a grammar-based general purpose framework for the automatic search and deployment of potentially Deep Artificial Neural Networks (DANNs). The approach is known as Fast Deep Evolutionary Network Structured Representation (Fast-DENSER) and is capable of simultaneously optimising the topology, learning strategy and any other required hyper-parameters (e.g., data pre-processing or augmentation). Fast-DENSER has been successfully applied to numerous object recognition tasks, with the generation of Convolutional Neural Networks (CNNs). The code is developed and tested in Python3, and made available as a library. A simple and easy to follow example is described for the automatic search of CNNs for the Fashion-MNIST benchmark |
| publishDate |
2021 |
| dc.date.none.fl_str_mv |
2021 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10316/100856 https://hdl.handle.net/10316/100856 https://doi.org/10.1016/j.softx.2021.100694 |
| url |
https://hdl.handle.net/10316/100856 https://doi.org/10.1016/j.softx.2021.100694 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
23527110 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833602489116524544 |