Fast-DENSER: Fast Deep Evolutionary Network Structured Representation

Detalhes bibliográficos
Autor(a) principal: Assunção, Filipe
Data de Publicação: 2021
Outros Autores: Lourenço, Nuno, Ribeiro, Bernardete, Machado, Penousal
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: https://hdl.handle.net/10316/100856
https://doi.org/10.1016/j.softx.2021.100694
Resumo: This paper introduces a grammar-based general purpose framework for the automatic search and deployment of potentially Deep Artificial Neural Networks (DANNs). The approach is known as Fast Deep Evolutionary Network Structured Representation (Fast-DENSER) and is capable of simultaneously optimising the topology, learning strategy and any other required hyper-parameters (e.g., data pre-processing or augmentation). Fast-DENSER has been successfully applied to numerous object recognition tasks, with the generation of Convolutional Neural Networks (CNNs). The code is developed and tested in Python3, and made available as a library. A simple and easy to follow example is described for the automatic search of CNNs for the Fashion-MNIST benchmark
id RCAP_abb6b3611f5b25d6d61955f4d59b3968
oai_identifier_str oai:estudogeral.uc.pt:10316/100856
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Fast-DENSER: Fast Deep Evolutionary Network Structured RepresentationArtificial Neural NetworksAutomated machine learningNeuroEvolutionThis paper introduces a grammar-based general purpose framework for the automatic search and deployment of potentially Deep Artificial Neural Networks (DANNs). The approach is known as Fast Deep Evolutionary Network Structured Representation (Fast-DENSER) and is capable of simultaneously optimising the topology, learning strategy and any other required hyper-parameters (e.g., data pre-processing or augmentation). Fast-DENSER has been successfully applied to numerous object recognition tasks, with the generation of Convolutional Neural Networks (CNNs). The code is developed and tested in Python3, and made available as a library. A simple and easy to follow example is described for the automatic search of CNNs for the Fashion-MNIST benchmarkFEDER Regional Operational Program Centro 2020 and FCT Grant No: SFRH/BD/114865/2016.2021info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttps://hdl.handle.net/10316/100856https://hdl.handle.net/10316/100856https://doi.org/10.1016/j.softx.2021.100694eng23527110Assunção, FilipeLourenço, NunoRibeiro, BernardeteMachado, Penousalinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-06T13:05:39Zoai:estudogeral.uc.pt:10316/100856Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T05:50:02.518310Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Fast-DENSER: Fast Deep Evolutionary Network Structured Representation
title Fast-DENSER: Fast Deep Evolutionary Network Structured Representation
spellingShingle Fast-DENSER: Fast Deep Evolutionary Network Structured Representation
Assunção, Filipe
Artificial Neural Networks
Automated machine learning
NeuroEvolution
title_short Fast-DENSER: Fast Deep Evolutionary Network Structured Representation
title_full Fast-DENSER: Fast Deep Evolutionary Network Structured Representation
title_fullStr Fast-DENSER: Fast Deep Evolutionary Network Structured Representation
title_full_unstemmed Fast-DENSER: Fast Deep Evolutionary Network Structured Representation
title_sort Fast-DENSER: Fast Deep Evolutionary Network Structured Representation
author Assunção, Filipe
author_facet Assunção, Filipe
Lourenço, Nuno
Ribeiro, Bernardete
Machado, Penousal
author_role author
author2 Lourenço, Nuno
Ribeiro, Bernardete
Machado, Penousal
author2_role author
author
author
dc.contributor.author.fl_str_mv Assunção, Filipe
Lourenço, Nuno
Ribeiro, Bernardete
Machado, Penousal
dc.subject.por.fl_str_mv Artificial Neural Networks
Automated machine learning
NeuroEvolution
topic Artificial Neural Networks
Automated machine learning
NeuroEvolution
description This paper introduces a grammar-based general purpose framework for the automatic search and deployment of potentially Deep Artificial Neural Networks (DANNs). The approach is known as Fast Deep Evolutionary Network Structured Representation (Fast-DENSER) and is capable of simultaneously optimising the topology, learning strategy and any other required hyper-parameters (e.g., data pre-processing or augmentation). Fast-DENSER has been successfully applied to numerous object recognition tasks, with the generation of Convolutional Neural Networks (CNNs). The code is developed and tested in Python3, and made available as a library. A simple and easy to follow example is described for the automatic search of CNNs for the Fashion-MNIST benchmark
publishDate 2021
dc.date.none.fl_str_mv 2021
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10316/100856
https://hdl.handle.net/10316/100856
https://doi.org/10.1016/j.softx.2021.100694
url https://hdl.handle.net/10316/100856
https://doi.org/10.1016/j.softx.2021.100694
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 23527110
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833602489116524544