Object detection and recognition in complex scenes

Bibliographic Details
Main Author: Mohammed, Hussein Adnan
Publication Date: 2014
Format: Master thesis
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10400.1/8368
Summary: Contour-based object detection and recognition in complex scenes is one of the most dificult problems in computer vision. Object contours in complex scenes can be fragmented, occluded and deformed. Instances of the same class can have a wide range of variations. Clutter and background edges can provide more than 90% of all image edges. Nevertheless, our biological vision system is able to perform this task effortlessly. On the other hand, the performance of state-of-the-art computer vision algorithms is still limited in terms of both speed and accuracy. The work in this thesis presents a simple, efficient and biologically motivated method for contour-based object detection and recognition in complex scenes. Edge segments are extracted from training and testing images using a simple contour-following algorithm at each pixel. Then a descriptor is calculated for each segment using Shape Context, including an offset distance relative to the centre of the object. A Bayesian criterion is used to determine the discriminative power of each segment in a query image by means of a nearest-neighbour lookup, and the most discriminative segments vote for potential bounding boxes. The generated hypotheses are validated using the k nearest-neighbour method in order to eliminate false object detections. Furthermore, meaningful model segments are extracted by finding edge fragments that appear frequently in training images of the same class. Only 2% of the training segments are employed in the models. These models are used as a second approach to validate the hypotheses, using a distancebased measure based on nearest-neighbour lookups of each segment of the hypotheses. A review of shape coding in the visual cortex of primates is provided. The shape-related roles of each region in the ventral pathway of the visual cortex are described. A further step towards a fully biological model for contourbased object detection and recognition is performed by implementing a model for meaningful segment extraction and binding on the basis of two biological principles: proximity and alignment. Evaluation on a challenging benchmark is performed for both k nearestneighbour and model-segment validation methods. Recall rates of the proposed method are compared to the results of recent state-of-the-art algorithms at 0.3 and 0.4 false positive detections per image.
id RCAP_a9823f85901e7cad38dc330e57a6e7de
oai_identifier_str oai:sapientia.ualg.pt:10400.1/8368
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Object detection and recognition in complex scenesObject detectionEdge fragmentsShape contextComputer visionHuman visionContour-based object detection and recognition in complex scenes is one of the most dificult problems in computer vision. Object contours in complex scenes can be fragmented, occluded and deformed. Instances of the same class can have a wide range of variations. Clutter and background edges can provide more than 90% of all image edges. Nevertheless, our biological vision system is able to perform this task effortlessly. On the other hand, the performance of state-of-the-art computer vision algorithms is still limited in terms of both speed and accuracy. The work in this thesis presents a simple, efficient and biologically motivated method for contour-based object detection and recognition in complex scenes. Edge segments are extracted from training and testing images using a simple contour-following algorithm at each pixel. Then a descriptor is calculated for each segment using Shape Context, including an offset distance relative to the centre of the object. A Bayesian criterion is used to determine the discriminative power of each segment in a query image by means of a nearest-neighbour lookup, and the most discriminative segments vote for potential bounding boxes. The generated hypotheses are validated using the k nearest-neighbour method in order to eliminate false object detections. Furthermore, meaningful model segments are extracted by finding edge fragments that appear frequently in training images of the same class. Only 2% of the training segments are employed in the models. These models are used as a second approach to validate the hypotheses, using a distancebased measure based on nearest-neighbour lookups of each segment of the hypotheses. A review of shape coding in the visual cortex of primates is provided. The shape-related roles of each region in the ventral pathway of the visual cortex are described. A further step towards a fully biological model for contourbased object detection and recognition is performed by implementing a model for meaningful segment extraction and binding on the basis of two biological principles: proximity and alignment. Evaluation on a challenging benchmark is performed for both k nearestneighbour and model-segment validation methods. Recall rates of the proposed method are compared to the results of recent state-of-the-art algorithms at 0.3 and 0.4 false positive detections per image.du Buf, J. M. H.Terzić, KasimSapientiaMohammed, Hussein Adnan2016-06-01T09:46:09Z201420142014-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.1/8368urn:tid:202446891enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-18T17:43:05Zoai:sapientia.ualg.pt:10400.1/8368Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T20:33:03.300613Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Object detection and recognition in complex scenes
title Object detection and recognition in complex scenes
spellingShingle Object detection and recognition in complex scenes
Mohammed, Hussein Adnan
Object detection
Edge fragments
Shape context
Computer vision
Human vision
title_short Object detection and recognition in complex scenes
title_full Object detection and recognition in complex scenes
title_fullStr Object detection and recognition in complex scenes
title_full_unstemmed Object detection and recognition in complex scenes
title_sort Object detection and recognition in complex scenes
author Mohammed, Hussein Adnan
author_facet Mohammed, Hussein Adnan
author_role author
dc.contributor.none.fl_str_mv du Buf, J. M. H.
Terzić, Kasim
Sapientia
dc.contributor.author.fl_str_mv Mohammed, Hussein Adnan
dc.subject.por.fl_str_mv Object detection
Edge fragments
Shape context
Computer vision
Human vision
topic Object detection
Edge fragments
Shape context
Computer vision
Human vision
description Contour-based object detection and recognition in complex scenes is one of the most dificult problems in computer vision. Object contours in complex scenes can be fragmented, occluded and deformed. Instances of the same class can have a wide range of variations. Clutter and background edges can provide more than 90% of all image edges. Nevertheless, our biological vision system is able to perform this task effortlessly. On the other hand, the performance of state-of-the-art computer vision algorithms is still limited in terms of both speed and accuracy. The work in this thesis presents a simple, efficient and biologically motivated method for contour-based object detection and recognition in complex scenes. Edge segments are extracted from training and testing images using a simple contour-following algorithm at each pixel. Then a descriptor is calculated for each segment using Shape Context, including an offset distance relative to the centre of the object. A Bayesian criterion is used to determine the discriminative power of each segment in a query image by means of a nearest-neighbour lookup, and the most discriminative segments vote for potential bounding boxes. The generated hypotheses are validated using the k nearest-neighbour method in order to eliminate false object detections. Furthermore, meaningful model segments are extracted by finding edge fragments that appear frequently in training images of the same class. Only 2% of the training segments are employed in the models. These models are used as a second approach to validate the hypotheses, using a distancebased measure based on nearest-neighbour lookups of each segment of the hypotheses. A review of shape coding in the visual cortex of primates is provided. The shape-related roles of each region in the ventral pathway of the visual cortex are described. A further step towards a fully biological model for contourbased object detection and recognition is performed by implementing a model for meaningful segment extraction and binding on the basis of two biological principles: proximity and alignment. Evaluation on a challenging benchmark is performed for both k nearestneighbour and model-segment validation methods. Recall rates of the proposed method are compared to the results of recent state-of-the-art algorithms at 0.3 and 0.4 false positive detections per image.
publishDate 2014
dc.date.none.fl_str_mv 2014
2014
2014-01-01T00:00:00Z
2016-06-01T09:46:09Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.1/8368
urn:tid:202446891
url http://hdl.handle.net/10400.1/8368
identifier_str_mv urn:tid:202446891
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833598712070275072