Realistic adversarial machine learning to improve network intrusion detection

Bibliographic Details
Main Author: Vitorino, João Pedro Machado
Publication Date: 2023
Format: Master thesis
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10400.22/23426
Summary: Modern organizations can significantly benefit from the use of Artificial Intelligence (AI), and more specifically Machine Learning (ML), to tackle the growing number and increasing sophistication of cyber-attacks targeting their business processes. However, there are several technological and ethical challenges that undermine the trustworthiness of AI. One of the main challenges is the lack of robustness, which is an essential property to ensure that ML is used in a secure way. Improving robustness is no easy task because ML is inherently susceptible to adversarial examples: data samples with subtle perturbations that cause unexpected behaviors in ML models. ML engineers and security practitioners still lack the knowledge and tools to prevent such disruptions, so adversarial examples pose a major threat to ML and to the intelligent Network Intrusion Detection (NID) systems that rely on it. This thesis presents a methodology for a trustworthy adversarial robustness analysis of multiple ML models, and an intelligent method for the generation of realistic adversarial examples in complex tabular data domains like the NID domain: Adaptative Perturbation Pattern Method (A2PM). It is demonstrated that a successful adversarial attack is not guaranteed to be a successful cyber-attack, and that adversarial data perturbations can only be realistic if they are simultaneously valid and coherent, complying with the domain constraints of a real communication network and the class-specific constraints of a certain cyber-attack class. A2PM can be used for adversarial attacks, to iteratively cause misclassifications, and adversarial training, to perform data augmentation with slightly perturbed data samples. Two case studies were conducted to evaluate its suitability for the NID domain. The first verified that the generated perturbations preserved both validity and coherence in Enterprise and Internet-of Things (IoT) network scenarios, achieving realism. The second verified that adversarial training with simple perturbations enables the models to retain a good generalization to regular IoT network traffic flows, in addition to being more robust to adversarial examples. The key takeaway of this thesis is: ML models can be incredibly valuable to improve a cybersecurity system, but their own vulnerabilities must not be disregarded. It is essential to continue the research efforts to improve the security and trustworthiness of ML and of the intelligent systems that rely on it.
id RCAP_a96b843d433f58ef546e8866b18f59bf
oai_identifier_str oai:recipp.ipp.pt:10400.22/23426
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Realistic adversarial machine learning to improve network intrusion detectionRealistic adversarial examplesAdversarial robustnessTabular dataMachine learningCybersecurityExemplos adversos realistasRobustez adversaDados tabularesAprendizagem automáticaCibersegurançaModern organizations can significantly benefit from the use of Artificial Intelligence (AI), and more specifically Machine Learning (ML), to tackle the growing number and increasing sophistication of cyber-attacks targeting their business processes. However, there are several technological and ethical challenges that undermine the trustworthiness of AI. One of the main challenges is the lack of robustness, which is an essential property to ensure that ML is used in a secure way. Improving robustness is no easy task because ML is inherently susceptible to adversarial examples: data samples with subtle perturbations that cause unexpected behaviors in ML models. ML engineers and security practitioners still lack the knowledge and tools to prevent such disruptions, so adversarial examples pose a major threat to ML and to the intelligent Network Intrusion Detection (NID) systems that rely on it. This thesis presents a methodology for a trustworthy adversarial robustness analysis of multiple ML models, and an intelligent method for the generation of realistic adversarial examples in complex tabular data domains like the NID domain: Adaptative Perturbation Pattern Method (A2PM). It is demonstrated that a successful adversarial attack is not guaranteed to be a successful cyber-attack, and that adversarial data perturbations can only be realistic if they are simultaneously valid and coherent, complying with the domain constraints of a real communication network and the class-specific constraints of a certain cyber-attack class. A2PM can be used for adversarial attacks, to iteratively cause misclassifications, and adversarial training, to perform data augmentation with slightly perturbed data samples. Two case studies were conducted to evaluate its suitability for the NID domain. The first verified that the generated perturbations preserved both validity and coherence in Enterprise and Internet-of Things (IoT) network scenarios, achieving realism. The second verified that adversarial training with simple perturbations enables the models to retain a good generalization to regular IoT network traffic flows, in addition to being more robust to adversarial examples. The key takeaway of this thesis is: ML models can be incredibly valuable to improve a cybersecurity system, but their own vulnerabilities must not be disregarded. It is essential to continue the research efforts to improve the security and trustworthiness of ML and of the intelligent systems that rely on it.Pereira, Isabel Cecília Correia da Silva Praça GomesREPOSITÓRIO P.PORTOVitorino, João Pedro Machado2023-08-29T11:32:16Z20232023-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.22/23426urn:tid:203344200enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-07T10:01:32Zoai:recipp.ipp.pt:10400.22/23426Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T00:26:11.741311Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Realistic adversarial machine learning to improve network intrusion detection
title Realistic adversarial machine learning to improve network intrusion detection
spellingShingle Realistic adversarial machine learning to improve network intrusion detection
Vitorino, João Pedro Machado
Realistic adversarial examples
Adversarial robustness
Tabular data
Machine learning
Cybersecurity
Exemplos adversos realistas
Robustez adversa
Dados tabulares
Aprendizagem automática
Cibersegurança
title_short Realistic adversarial machine learning to improve network intrusion detection
title_full Realistic adversarial machine learning to improve network intrusion detection
title_fullStr Realistic adversarial machine learning to improve network intrusion detection
title_full_unstemmed Realistic adversarial machine learning to improve network intrusion detection
title_sort Realistic adversarial machine learning to improve network intrusion detection
author Vitorino, João Pedro Machado
author_facet Vitorino, João Pedro Machado
author_role author
dc.contributor.none.fl_str_mv Pereira, Isabel Cecília Correia da Silva Praça Gomes
REPOSITÓRIO P.PORTO
dc.contributor.author.fl_str_mv Vitorino, João Pedro Machado
dc.subject.por.fl_str_mv Realistic adversarial examples
Adversarial robustness
Tabular data
Machine learning
Cybersecurity
Exemplos adversos realistas
Robustez adversa
Dados tabulares
Aprendizagem automática
Cibersegurança
topic Realistic adversarial examples
Adversarial robustness
Tabular data
Machine learning
Cybersecurity
Exemplos adversos realistas
Robustez adversa
Dados tabulares
Aprendizagem automática
Cibersegurança
description Modern organizations can significantly benefit from the use of Artificial Intelligence (AI), and more specifically Machine Learning (ML), to tackle the growing number and increasing sophistication of cyber-attacks targeting their business processes. However, there are several technological and ethical challenges that undermine the trustworthiness of AI. One of the main challenges is the lack of robustness, which is an essential property to ensure that ML is used in a secure way. Improving robustness is no easy task because ML is inherently susceptible to adversarial examples: data samples with subtle perturbations that cause unexpected behaviors in ML models. ML engineers and security practitioners still lack the knowledge and tools to prevent such disruptions, so adversarial examples pose a major threat to ML and to the intelligent Network Intrusion Detection (NID) systems that rely on it. This thesis presents a methodology for a trustworthy adversarial robustness analysis of multiple ML models, and an intelligent method for the generation of realistic adversarial examples in complex tabular data domains like the NID domain: Adaptative Perturbation Pattern Method (A2PM). It is demonstrated that a successful adversarial attack is not guaranteed to be a successful cyber-attack, and that adversarial data perturbations can only be realistic if they are simultaneously valid and coherent, complying with the domain constraints of a real communication network and the class-specific constraints of a certain cyber-attack class. A2PM can be used for adversarial attacks, to iteratively cause misclassifications, and adversarial training, to perform data augmentation with slightly perturbed data samples. Two case studies were conducted to evaluate its suitability for the NID domain. The first verified that the generated perturbations preserved both validity and coherence in Enterprise and Internet-of Things (IoT) network scenarios, achieving realism. The second verified that adversarial training with simple perturbations enables the models to retain a good generalization to regular IoT network traffic flows, in addition to being more robust to adversarial examples. The key takeaway of this thesis is: ML models can be incredibly valuable to improve a cybersecurity system, but their own vulnerabilities must not be disregarded. It is essential to continue the research efforts to improve the security and trustworthiness of ML and of the intelligent systems that rely on it.
publishDate 2023
dc.date.none.fl_str_mv 2023-08-29T11:32:16Z
2023
2023-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.22/23426
urn:tid:203344200
url http://hdl.handle.net/10400.22/23426
identifier_str_mv urn:tid:203344200
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833600535119265792