Optimizing variational problems through weighted fractional derivatives
Main Author: | |
---|---|
Publication Date: | 2024 |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10773/41996 |
Summary: | In this article, we explore a variety of problems within the domain of calculus of variations, specifically in the context of fractional calculus. The fractional derivative we consider incorporates the notion of weighted fractional derivatives along with derivatives with respect to another function. Besides the fractional operators, the Lagrange function depends on extremal points. We examine the fundamental problem, providing the fractional Euler–Lagrange equation and the associated transversality conditions. Both the isoperimetric and Herglotz problems are also explored. Finally, we conclude with an analysis of the variational problem, incorporating fractional derivatives of any positive real order. |
id |
RCAP_a897b0e5960b8de05350035206f64cf1 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/41996 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Optimizing variational problems through weighted fractional derivativesWeighted fractional derivativeFractional calculus of variationsEuler–Lagrange equationIn this article, we explore a variety of problems within the domain of calculus of variations, specifically in the context of fractional calculus. The fractional derivative we consider incorporates the notion of weighted fractional derivatives along with derivatives with respect to another function. Besides the fractional operators, the Lagrange function depends on extremal points. We examine the fundamental problem, providing the fractional Euler–Lagrange equation and the associated transversality conditions. Both the isoperimetric and Herglotz problems are also explored. Finally, we conclude with an analysis of the variational problem, incorporating fractional derivatives of any positive real order.MDPI2024-06-05T09:27:34Z2024-01-01T00:00:00Z2024info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/41996eng10.3390/fractalfract8050272Almeida, Ricardoinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-06-10T01:47:34Zoai:ria.ua.pt:10773/41996Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:55:13.248213Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Optimizing variational problems through weighted fractional derivatives |
title |
Optimizing variational problems through weighted fractional derivatives |
spellingShingle |
Optimizing variational problems through weighted fractional derivatives Almeida, Ricardo Weighted fractional derivative Fractional calculus of variations Euler–Lagrange equation |
title_short |
Optimizing variational problems through weighted fractional derivatives |
title_full |
Optimizing variational problems through weighted fractional derivatives |
title_fullStr |
Optimizing variational problems through weighted fractional derivatives |
title_full_unstemmed |
Optimizing variational problems through weighted fractional derivatives |
title_sort |
Optimizing variational problems through weighted fractional derivatives |
author |
Almeida, Ricardo |
author_facet |
Almeida, Ricardo |
author_role |
author |
dc.contributor.author.fl_str_mv |
Almeida, Ricardo |
dc.subject.por.fl_str_mv |
Weighted fractional derivative Fractional calculus of variations Euler–Lagrange equation |
topic |
Weighted fractional derivative Fractional calculus of variations Euler–Lagrange equation |
description |
In this article, we explore a variety of problems within the domain of calculus of variations, specifically in the context of fractional calculus. The fractional derivative we consider incorporates the notion of weighted fractional derivatives along with derivatives with respect to another function. Besides the fractional operators, the Lagrange function depends on extremal points. We examine the fundamental problem, providing the fractional Euler–Lagrange equation and the associated transversality conditions. Both the isoperimetric and Herglotz problems are also explored. Finally, we conclude with an analysis of the variational problem, incorporating fractional derivatives of any positive real order. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-06-05T09:27:34Z 2024-01-01T00:00:00Z 2024 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/41996 |
url |
http://hdl.handle.net/10773/41996 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.3390/fractalfract8050272 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833597060673175552 |