Turning the tide: a 2°C increase in heat tolerance can halve climate change‐induced losses in four cold‐adapted kelp species

Detalhes bibliográficos
Autor(a) principal: Hill, Griffin
Data de Publicação: 2025
Outros Autores: Gauci, Clément, Assis, Jorge, Jueterbock, Alexander
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/10400.1/27132
Resumo: Kelp forests are susceptible to climate change, as their sessile nature and low dispersal capacity hinder tracking of suitable conditions. The emergence of a wide array of approaches to increasing thermal tolerance seeks to change the outlook of biodiversity in a changing climate but lacks clear targets of impactful thermal resilience. Here, we utilize species distribution models (SDMs) to evaluate the potential of enhanced thermal tolerance to buffer the effects of climate change on cold-adapted kelp species: Saccharina latissima, Alaria esculenta, Laminaria hyperborea, and Laminaria digitata. For each species, we compared a baseline model-where the thermal niche remained unchanged-to models where the simulated maximum sea surface temperature tolerance was increased by 1 degrees C-5 degrees C. These models were projected into three climate change scenarios: sustainability (Shared Socioeconomic Pathway (SSP) 1-1.9, Paris Agreement), regional rivalry (SSP3-7.0), and fossil-fuel development (SSP 5-8.5). Our SDMs demonstrate that an increase of 1 degrees C-2 degrees C in thermal tolerance could recover over 50% of predicted losses of suitable habitat for cold-adapted kelps. However, A. esculenta, a species of growing commercial interest, still faced persistent habitat contraction across all climate change scenarios and simulated tolerance increases, including up to 15% unrecovered losses under SSP5-8.5, even with a simulated 5 degrees C increase in thermal tolerance. Our findings highlight the need for a two-pronged approach to conserve cold-adapted kelp forests: stringent reductions in greenhouse gas emission reductions in line with the SSP1-1.9 scenario, and strategies to boost kelp's thermal tolerance by at least 1 degrees C-2 degrees C. This dual approach is crucial to maintain 90% of the current suitable habitat of S. latissima and L. digitata, and 70% for A. esculenta and L. hyperborea. Relying on mitigation or adaptation alone will likely be insufficient to maintain their historic range under projected climate change.
id RCAP_a7f54c93c1d0cce2f6e7a92d92943797
oai_identifier_str oai:sapientia.ualg.pt:10400.1/27132
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Turning the tide: a 2°C increase in heat tolerance can halve climate change‐induced losses in four cold‐adapted kelp speciesAssisted evolutionClimate changeHeat toleranceKelp forestsRestorationSpecies distribution modelsKelp forests are susceptible to climate change, as their sessile nature and low dispersal capacity hinder tracking of suitable conditions. The emergence of a wide array of approaches to increasing thermal tolerance seeks to change the outlook of biodiversity in a changing climate but lacks clear targets of impactful thermal resilience. Here, we utilize species distribution models (SDMs) to evaluate the potential of enhanced thermal tolerance to buffer the effects of climate change on cold-adapted kelp species: Saccharina latissima, Alaria esculenta, Laminaria hyperborea, and Laminaria digitata. For each species, we compared a baseline model-where the thermal niche remained unchanged-to models where the simulated maximum sea surface temperature tolerance was increased by 1 degrees C-5 degrees C. These models were projected into three climate change scenarios: sustainability (Shared Socioeconomic Pathway (SSP) 1-1.9, Paris Agreement), regional rivalry (SSP3-7.0), and fossil-fuel development (SSP 5-8.5). Our SDMs demonstrate that an increase of 1 degrees C-2 degrees C in thermal tolerance could recover over 50% of predicted losses of suitable habitat for cold-adapted kelps. However, A. esculenta, a species of growing commercial interest, still faced persistent habitat contraction across all climate change scenarios and simulated tolerance increases, including up to 15% unrecovered losses under SSP5-8.5, even with a simulated 5 degrees C increase in thermal tolerance. Our findings highlight the need for a two-pronged approach to conserve cold-adapted kelp forests: stringent reductions in greenhouse gas emission reductions in line with the SSP1-1.9 scenario, and strategies to boost kelp's thermal tolerance by at least 1 degrees C-2 degrees C. This dual approach is crucial to maintain 90% of the current suitable habitat of S. latissima and L. digitata, and 70% for A. esculenta and L. hyperborea. Relying on mitigation or adaptation alone will likely be insufficient to maintain their historic range under projected climate change.WileySapientiaHill, GriffinGauci, ClémentAssis, JorgeJueterbock, Alexander2025-05-19T10:24:43Z2025-042025-04-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.1/27132eng2045-775810.1002/ece3.71271info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-05-21T02:01:11Zoai:sapientia.ualg.pt:10400.1/27132Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T07:35:28.607480Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Turning the tide: a 2°C increase in heat tolerance can halve climate change‐induced losses in four cold‐adapted kelp species
title Turning the tide: a 2°C increase in heat tolerance can halve climate change‐induced losses in four cold‐adapted kelp species
spellingShingle Turning the tide: a 2°C increase in heat tolerance can halve climate change‐induced losses in four cold‐adapted kelp species
Hill, Griffin
Assisted evolution
Climate change
Heat tolerance
Kelp forests
Restoration
Species distribution models
title_short Turning the tide: a 2°C increase in heat tolerance can halve climate change‐induced losses in four cold‐adapted kelp species
title_full Turning the tide: a 2°C increase in heat tolerance can halve climate change‐induced losses in four cold‐adapted kelp species
title_fullStr Turning the tide: a 2°C increase in heat tolerance can halve climate change‐induced losses in four cold‐adapted kelp species
title_full_unstemmed Turning the tide: a 2°C increase in heat tolerance can halve climate change‐induced losses in four cold‐adapted kelp species
title_sort Turning the tide: a 2°C increase in heat tolerance can halve climate change‐induced losses in four cold‐adapted kelp species
author Hill, Griffin
author_facet Hill, Griffin
Gauci, Clément
Assis, Jorge
Jueterbock, Alexander
author_role author
author2 Gauci, Clément
Assis, Jorge
Jueterbock, Alexander
author2_role author
author
author
dc.contributor.none.fl_str_mv Sapientia
dc.contributor.author.fl_str_mv Hill, Griffin
Gauci, Clément
Assis, Jorge
Jueterbock, Alexander
dc.subject.por.fl_str_mv Assisted evolution
Climate change
Heat tolerance
Kelp forests
Restoration
Species distribution models
topic Assisted evolution
Climate change
Heat tolerance
Kelp forests
Restoration
Species distribution models
description Kelp forests are susceptible to climate change, as their sessile nature and low dispersal capacity hinder tracking of suitable conditions. The emergence of a wide array of approaches to increasing thermal tolerance seeks to change the outlook of biodiversity in a changing climate but lacks clear targets of impactful thermal resilience. Here, we utilize species distribution models (SDMs) to evaluate the potential of enhanced thermal tolerance to buffer the effects of climate change on cold-adapted kelp species: Saccharina latissima, Alaria esculenta, Laminaria hyperborea, and Laminaria digitata. For each species, we compared a baseline model-where the thermal niche remained unchanged-to models where the simulated maximum sea surface temperature tolerance was increased by 1 degrees C-5 degrees C. These models were projected into three climate change scenarios: sustainability (Shared Socioeconomic Pathway (SSP) 1-1.9, Paris Agreement), regional rivalry (SSP3-7.0), and fossil-fuel development (SSP 5-8.5). Our SDMs demonstrate that an increase of 1 degrees C-2 degrees C in thermal tolerance could recover over 50% of predicted losses of suitable habitat for cold-adapted kelps. However, A. esculenta, a species of growing commercial interest, still faced persistent habitat contraction across all climate change scenarios and simulated tolerance increases, including up to 15% unrecovered losses under SSP5-8.5, even with a simulated 5 degrees C increase in thermal tolerance. Our findings highlight the need for a two-pronged approach to conserve cold-adapted kelp forests: stringent reductions in greenhouse gas emission reductions in line with the SSP1-1.9 scenario, and strategies to boost kelp's thermal tolerance by at least 1 degrees C-2 degrees C. This dual approach is crucial to maintain 90% of the current suitable habitat of S. latissima and L. digitata, and 70% for A. esculenta and L. hyperborea. Relying on mitigation or adaptation alone will likely be insufficient to maintain their historic range under projected climate change.
publishDate 2025
dc.date.none.fl_str_mv 2025-05-19T10:24:43Z
2025-04
2025-04-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.1/27132
url http://hdl.handle.net/10400.1/27132
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2045-7758
10.1002/ece3.71271
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Wiley
publisher.none.fl_str_mv Wiley
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833603012818370560