GAN Hyperparameters search through Genetic Algorithm

Detalhes bibliográficos
Autor(a) principal: Tammaro, Umberto
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/10362/135552
Resumo: Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Data Science
id RCAP_a733e9663a434009c4fe026556dfcde5
oai_identifier_str oai:run.unl.pt:10362/135552
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling GAN Hyperparameters search through Genetic AlgorithmArtificial neural networksGenerative Adversarial NetworksDissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Data ScienceRecent developments in Deep Learning are remarkable when it comes to generative models. The main reason for such progress is because of Generative Adversarial Networks (GANs) [1]. Introduced in a paper by Ian Goodfellow in 2014 GANs are machine learning models that are made of two neural networks: a Generator and a Discriminator. These two compete amongst each other to generate new, synthetic instances of data that resemble the real one. Despite their great potential, there are present challenges in their training, which include training instability, mode collapse, and vanishing gradient. A lot of research has been done on how to overcome these challenges, however, there was no significant proof found on whether modern techniques consistently outperform vanilla GAN. The performances of GANs are also highly dependent on the dataset they are trained on. One of the main challenges is related to the search for hyperparameters. In this thesis, we try to overcome this challenge by applying an evolutionary algorithm to search for the best hyperparameters for a WGAN. We use Kullback-Leibler divergence to calculate the fitness of the individuals, and in the end, we select the best set of parameters generated by the evolutionary algorithm. The parameters of the best-selected individuals are maintained throughout the generations. We compare our approach with the standard hyperparameters given by the state-of-art.Castelli, MauroRUNTammaro, Umberto2022-03-30T17:11:03Z2022-03-072022-03-07T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/135552TID:202979792enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T18:00:46Zoai:run.unl.pt:10362/135552Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:31:50.034491Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv GAN Hyperparameters search through Genetic Algorithm
title GAN Hyperparameters search through Genetic Algorithm
spellingShingle GAN Hyperparameters search through Genetic Algorithm
Tammaro, Umberto
Artificial neural networks
Generative Adversarial Networks
title_short GAN Hyperparameters search through Genetic Algorithm
title_full GAN Hyperparameters search through Genetic Algorithm
title_fullStr GAN Hyperparameters search through Genetic Algorithm
title_full_unstemmed GAN Hyperparameters search through Genetic Algorithm
title_sort GAN Hyperparameters search through Genetic Algorithm
author Tammaro, Umberto
author_facet Tammaro, Umberto
author_role author
dc.contributor.none.fl_str_mv Castelli, Mauro
RUN
dc.contributor.author.fl_str_mv Tammaro, Umberto
dc.subject.por.fl_str_mv Artificial neural networks
Generative Adversarial Networks
topic Artificial neural networks
Generative Adversarial Networks
description Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Data Science
publishDate 2022
dc.date.none.fl_str_mv 2022-03-30T17:11:03Z
2022-03-07
2022-03-07T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/135552
TID:202979792
url http://hdl.handle.net/10362/135552
identifier_str_mv TID:202979792
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833596760547655680