On local convergence of stochastic global optimization algorithms
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2021 |
| Outros Autores: | |
| Idioma: | eng |
| Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Texto Completo: | https://hdl.handle.net/1822/78199 |
Resumo: | In engineering optimization with continuous variables, the use of Stochastic Global Optimization (SGO) algorithms is popular due to the easy availability of codes. All algorithms have a global and local search character, where the global behaviour tries to avoid getting trapped in local optima and the local behaviour intends to reach the lowest objective function values. As the algorithm parameter set includes a final convergence criterion, the algorithm might be running for a while around a reached minimum point. Our question deals with the local search behaviour after the algorithm reached the final stage. How fast do practical SGO algorithms actually converge to the minimum point? To investigate this question, we run implementations of well known SGO algorithms in a final local phase stage. |
| id |
RCAP_a42774c39fec038b7a93a4aeacc9cf46 |
|---|---|
| oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/78199 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
On local convergence of stochastic global optimization algorithmsStochastic global optimizationEvolutionary algorithmsConvergenceNonlinear optimizationScience & TechnologyIn engineering optimization with continuous variables, the use of Stochastic Global Optimization (SGO) algorithms is popular due to the easy availability of codes. All algorithms have a global and local search character, where the global behaviour tries to avoid getting trapped in local optima and the local behaviour intends to reach the lowest objective function values. As the algorithm parameter set includes a final convergence criterion, the algorithm might be running for a while around a reached minimum point. Our question deals with the local search behaviour after the algorithm reached the final stage. How fast do practical SGO algorithms actually converge to the minimum point? To investigate this question, we run implementations of well known SGO algorithms in a final local phase stage.- This paper has been supported by The Spanish Ministry (RTI2018-095993-B-I00) in part financed by the European Regional Development Fund (ERDF) and by FCT Fundacao para a Ciencia e Tecnologia within the Project Scope: UIDB/00319/2020.SpringerUniversidade do MinhoHendrix, Eligius M. T.Rocha, Ana Maria A. C.20212021-01-01T00:00:00Zconference paperinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://hdl.handle.net/1822/78199eng978-3-030-86975-50302-974310.1007/978-3-030-86976-2_31978-3-030-86976-2https://link.springer.com/chapter/10.1007/978-3-030-86976-2_31info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T07:00:06Zoai:repositorium.sdum.uminho.pt:1822/78199Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T16:11:35.242574Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
On local convergence of stochastic global optimization algorithms |
| title |
On local convergence of stochastic global optimization algorithms |
| spellingShingle |
On local convergence of stochastic global optimization algorithms Hendrix, Eligius M. T. Stochastic global optimization Evolutionary algorithms Convergence Nonlinear optimization Science & Technology |
| title_short |
On local convergence of stochastic global optimization algorithms |
| title_full |
On local convergence of stochastic global optimization algorithms |
| title_fullStr |
On local convergence of stochastic global optimization algorithms |
| title_full_unstemmed |
On local convergence of stochastic global optimization algorithms |
| title_sort |
On local convergence of stochastic global optimization algorithms |
| author |
Hendrix, Eligius M. T. |
| author_facet |
Hendrix, Eligius M. T. Rocha, Ana Maria A. C. |
| author_role |
author |
| author2 |
Rocha, Ana Maria A. C. |
| author2_role |
author |
| dc.contributor.none.fl_str_mv |
Universidade do Minho |
| dc.contributor.author.fl_str_mv |
Hendrix, Eligius M. T. Rocha, Ana Maria A. C. |
| dc.subject.por.fl_str_mv |
Stochastic global optimization Evolutionary algorithms Convergence Nonlinear optimization Science & Technology |
| topic |
Stochastic global optimization Evolutionary algorithms Convergence Nonlinear optimization Science & Technology |
| description |
In engineering optimization with continuous variables, the use of Stochastic Global Optimization (SGO) algorithms is popular due to the easy availability of codes. All algorithms have a global and local search character, where the global behaviour tries to avoid getting trapped in local optima and the local behaviour intends to reach the lowest objective function values. As the algorithm parameter set includes a final convergence criterion, the algorithm might be running for a while around a reached minimum point. Our question deals with the local search behaviour after the algorithm reached the final stage. How fast do practical SGO algorithms actually converge to the minimum point? To investigate this question, we run implementations of well known SGO algorithms in a final local phase stage. |
| publishDate |
2021 |
| dc.date.none.fl_str_mv |
2021 2021-01-01T00:00:00Z |
| dc.type.driver.fl_str_mv |
conference paper |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1822/78199 |
| url |
https://hdl.handle.net/1822/78199 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
978-3-030-86975-5 0302-9743 10.1007/978-3-030-86976-2_31 978-3-030-86976-2 https://link.springer.com/chapter/10.1007/978-3-030-86976-2_31 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Springer |
| publisher.none.fl_str_mv |
Springer |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833595798551527424 |