Samsung field lab Voids: demand forecasting for consumer electronic goods - a transformer-based deep learning approach
| Main Author: | |
|---|---|
| Publication Date: | 2021 |
| Format: | Master thesis |
| Language: | eng |
| Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Download full: | http://hdl.handle.net/10362/140130 |
Summary: | VOIDS is a data science student entrepreneurial project that aims to integrate marketing into demand planning, helping companies to achieve the most accurate way of planning and shaping future demand. The following work applies this vision in a lean agile start-up framework, implementing state-of-the-art deep learning time series forecasting techniques for the global consumer electronic brand Samsung. This work implements Google AI’s Temporal Fusion Transformer to forecast demand. Novel algorithms then optimize forecasts related to Samsung’s operational processes and context and benchmark against a customized measure of accuracy, achieving a 11,4-pp. absolute increase. Further, applicability to demand shaping is discussed. |
| id |
RCAP_a2a490acb48891cd7ce6bd2ff3b6fcdb |
|---|---|
| oai_identifier_str |
oai:run.unl.pt:10362/140130 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Samsung field lab Voids: demand forecasting for consumer electronic goods - a transformer-based deep learning approachMarketingForecastingMachine learningPythonBusiness analyticsDigital transformationDeep learningDemand planningConsumer electronicsLean startupDomínio/Área Científica::Ciências Sociais::Economia e GestãoVOIDS is a data science student entrepreneurial project that aims to integrate marketing into demand planning, helping companies to achieve the most accurate way of planning and shaping future demand. The following work applies this vision in a lean agile start-up framework, implementing state-of-the-art deep learning time series forecasting techniques for the global consumer electronic brand Samsung. This work implements Google AI’s Temporal Fusion Transformer to forecast demand. Novel algorithms then optimize forecasts related to Samsung’s operational processes and context and benchmark against a customized measure of accuracy, achieving a 11,4-pp. absolute increase. Further, applicability to demand shaping is discussed.Han, QiweiMeixedo, BonifácioRUNWandersleb, Tobias Theodor2022-01-212021-12-172027-12-17T00:00:00Z2022-01-21T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/140130TID:202997480enginfo:eu-repo/semantics/embargoedAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T18:02:30Zoai:run.unl.pt:10362/140130Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:33:24.835606Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Samsung field lab Voids: demand forecasting for consumer electronic goods - a transformer-based deep learning approach |
| title |
Samsung field lab Voids: demand forecasting for consumer electronic goods - a transformer-based deep learning approach |
| spellingShingle |
Samsung field lab Voids: demand forecasting for consumer electronic goods - a transformer-based deep learning approach Wandersleb, Tobias Theodor Marketing Forecasting Machine learning Python Business analytics Digital transformation Deep learning Demand planning Consumer electronics Lean startup Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
| title_short |
Samsung field lab Voids: demand forecasting for consumer electronic goods - a transformer-based deep learning approach |
| title_full |
Samsung field lab Voids: demand forecasting for consumer electronic goods - a transformer-based deep learning approach |
| title_fullStr |
Samsung field lab Voids: demand forecasting for consumer electronic goods - a transformer-based deep learning approach |
| title_full_unstemmed |
Samsung field lab Voids: demand forecasting for consumer electronic goods - a transformer-based deep learning approach |
| title_sort |
Samsung field lab Voids: demand forecasting for consumer electronic goods - a transformer-based deep learning approach |
| author |
Wandersleb, Tobias Theodor |
| author_facet |
Wandersleb, Tobias Theodor |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Han, Qiwei Meixedo, Bonifácio RUN |
| dc.contributor.author.fl_str_mv |
Wandersleb, Tobias Theodor |
| dc.subject.por.fl_str_mv |
Marketing Forecasting Machine learning Python Business analytics Digital transformation Deep learning Demand planning Consumer electronics Lean startup Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
| topic |
Marketing Forecasting Machine learning Python Business analytics Digital transformation Deep learning Demand planning Consumer electronics Lean startup Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
| description |
VOIDS is a data science student entrepreneurial project that aims to integrate marketing into demand planning, helping companies to achieve the most accurate way of planning and shaping future demand. The following work applies this vision in a lean agile start-up framework, implementing state-of-the-art deep learning time series forecasting techniques for the global consumer electronic brand Samsung. This work implements Google AI’s Temporal Fusion Transformer to forecast demand. Novel algorithms then optimize forecasts related to Samsung’s operational processes and context and benchmark against a customized measure of accuracy, achieving a 11,4-pp. absolute increase. Further, applicability to demand shaping is discussed. |
| publishDate |
2021 |
| dc.date.none.fl_str_mv |
2021-12-17 2022-01-21 2022-01-21T00:00:00Z 2027-12-17T00:00:00Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/140130 TID:202997480 |
| url |
http://hdl.handle.net/10362/140130 |
| identifier_str_mv |
TID:202997480 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
| eu_rights_str_mv |
embargoedAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833596787820068864 |