Recoding the Saccharomyces cerevisiae genome

Detalhes bibliográficos
Autor(a) principal: Silva, Ana Rita Guimarães Rodrigues da
Data de Publicação: 2023
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/10773/41440
Resumo: The genetic code is considered one of the most conserved, even immutable, features of life. However, numerous deviations from its canonical form were discovered across the three domains of life over the last 40 years, highlighting the unexpected flexibility of this central process of life. These discoveries and previous work from our laboratory on the evolution of the genetic code inspired this PhD thesis. We explored the hypothesis that synthetic codon ambiguities combined with experimental evolution could lead to the reassignment of rare codons in the yeast S. cerevisiae. For this, we replaced the leucine-CUC decoding tRNA with a mutant serine tRNA, producing yeast strains that incorporate up to 50% of Ser at thousands of Leu-CUC sites, across the entire yeast proteome. Despite the associated high fitness cost, recombinant cells were highly tolerant and capable of adapting to high level Ser incorporation at CUC codons in a long-term evolutionary experiment. We found that adaptation to high Leu-to-Ser mistranslation triggered significant genomic alterations. Indeed, ploidy shifts, increased occurrence of copy number variation (CNVs) events, and aneuploidies were common in the recombinant yeast strains. Transcriptome and translatome analyses identified upregulated ribosomal proteins (RPs) as an unexpected player in the adaptation of yeast to Leu-to-Ser mistranslation at CUC sites. Contrary to expectation, the overexpression of RPs did not increase the protein synthesis rate, and it remains unclear how they contribute to CUC reprogramming or stress tolerance. By achieving 50% of Ser incorporation at Leu-CUC sites on a proteome wide scale, this project pushed the limit of sense codon ambiguity to unprecedented levels, showcasing both its plasticity and the impressive tolerance of yeast to translational errors. It also demonstrates the wide-reaching potential of this approach in synthetic biology and provides new clues about the biology of protein synthesis errors. Moreover, by expanding our understanding of the long-term effects of protein misfolding and aggregation, this work also contributes to the biological basis surrounding the pathophysiology of diseases triggered by these protein alterations.
id RCAP_a228aa76b2dd4c83410e55c4c9e255f9
oai_identifier_str oai:ria.ua.pt:10773/41440
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Recoding the Saccharomyces cerevisiae genomeSaccharomyces cerevisiaeGenetic codetRNAEvolutionMistranslationAdaptationThe genetic code is considered one of the most conserved, even immutable, features of life. However, numerous deviations from its canonical form were discovered across the three domains of life over the last 40 years, highlighting the unexpected flexibility of this central process of life. These discoveries and previous work from our laboratory on the evolution of the genetic code inspired this PhD thesis. We explored the hypothesis that synthetic codon ambiguities combined with experimental evolution could lead to the reassignment of rare codons in the yeast S. cerevisiae. For this, we replaced the leucine-CUC decoding tRNA with a mutant serine tRNA, producing yeast strains that incorporate up to 50% of Ser at thousands of Leu-CUC sites, across the entire yeast proteome. Despite the associated high fitness cost, recombinant cells were highly tolerant and capable of adapting to high level Ser incorporation at CUC codons in a long-term evolutionary experiment. We found that adaptation to high Leu-to-Ser mistranslation triggered significant genomic alterations. Indeed, ploidy shifts, increased occurrence of copy number variation (CNVs) events, and aneuploidies were common in the recombinant yeast strains. Transcriptome and translatome analyses identified upregulated ribosomal proteins (RPs) as an unexpected player in the adaptation of yeast to Leu-to-Ser mistranslation at CUC sites. Contrary to expectation, the overexpression of RPs did not increase the protein synthesis rate, and it remains unclear how they contribute to CUC reprogramming or stress tolerance. By achieving 50% of Ser incorporation at Leu-CUC sites on a proteome wide scale, this project pushed the limit of sense codon ambiguity to unprecedented levels, showcasing both its plasticity and the impressive tolerance of yeast to translational errors. It also demonstrates the wide-reaching potential of this approach in synthetic biology and provides new clues about the biology of protein synthesis errors. Moreover, by expanding our understanding of the long-term effects of protein misfolding and aggregation, this work also contributes to the biological basis surrounding the pathophysiology of diseases triggered by these protein alterations.O código genético é considerado uma das características mais conservadas, até mesmo imutáveis, da vida. No entanto, nos últimos 40 anos, foram descobertos numerosos desvios à sua forma canónica nos três domínios da vida, evidenciando a inesperada flexibilidade deste processo central da vida. Esta tese foi inspirada nestas observações e em trabalhos anteriores do nosso laboratório sobre a evolução do código genético. Utilizámos S. cerevisiae para explorar a hipótese que a introdução artificial de ambiguidade ao nível do codão, em combinação com evolução experimental, tem o potencial de recodificar codões raros. Para tal, substituímos o tRNA responsável pela descodificação do codão CUC de leucina por um tRNA mutante de serina. Desta forma, produzimos estirpes que incorporam até 50% de Ser em milhares de codões CUC em todo o proteoma. Apesar do elevado custo associado para o fitness, as células recombinantes mostraram-se altamente tolerantes ao elevado nível de incorporação de Ser em codões Leu-CUC e capazes de uma adaptação notável após uma evolução experimental de longa duração. Constatámos que a adaptabilidade ao elevado nível de mistranslation desencadeou alterações genómicas significativas, incluindo alterações de ploidia, e no aumento da ocorrência de variações no número de cópias (CNVs) e aneuploidias. Análises de transcriptoma e translatoma identificaram, de forma inesperada, o aumento da expressão de proteínas ribossomais (RPs) como intervenientes no processo de adaptação à mistranslation. Contrariamente à expectativa, o aumento de RPs não se traduziu no aumento da taxa de síntese proteica, e o seu contributo para a reprogramação dos codões CUC ou para a tolerância ao stress não é claro. Este trabalho desafiou os limites da ambiguidade permitida num codão senso ao atingir um nível de 50% de incorporação de Ser em codões de Leu-CUC em todo o proteoma, demonstrando o potencial da estratégia adotada para a biologia sintética. Realça também a plasticidade do código genético, tal como a capacidade adaptativa de levedura em resposta a erros de tradução, contribuindo para a compreensão da biologia dos erros de síntese proteica. Mais ainda, ao aprofundar o nosso conhecimento dos efeitos a longo prazo dos problemas conformacionais e da agregação de proteínas, este trabalho contribui também para a nossa compreensão da fisiopatologia das doenças provocadas por estas alterações proteicas.2025-12-21T00:00:00Z2023-12-20T00:00:00Z2023-12-20doctoral thesisinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10773/41440engSilva, Ana Rita Guimarães Rodrigues dainfo:eu-repo/semantics/embargoedAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T04:54:29Zoai:ria.ua.pt:10773/41440Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:23:59.849292Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Recoding the Saccharomyces cerevisiae genome
title Recoding the Saccharomyces cerevisiae genome
spellingShingle Recoding the Saccharomyces cerevisiae genome
Silva, Ana Rita Guimarães Rodrigues da
Saccharomyces cerevisiae
Genetic code
tRNA
Evolution
Mistranslation
Adaptation
title_short Recoding the Saccharomyces cerevisiae genome
title_full Recoding the Saccharomyces cerevisiae genome
title_fullStr Recoding the Saccharomyces cerevisiae genome
title_full_unstemmed Recoding the Saccharomyces cerevisiae genome
title_sort Recoding the Saccharomyces cerevisiae genome
author Silva, Ana Rita Guimarães Rodrigues da
author_facet Silva, Ana Rita Guimarães Rodrigues da
author_role author
dc.contributor.author.fl_str_mv Silva, Ana Rita Guimarães Rodrigues da
dc.subject.por.fl_str_mv Saccharomyces cerevisiae
Genetic code
tRNA
Evolution
Mistranslation
Adaptation
topic Saccharomyces cerevisiae
Genetic code
tRNA
Evolution
Mistranslation
Adaptation
description The genetic code is considered one of the most conserved, even immutable, features of life. However, numerous deviations from its canonical form were discovered across the three domains of life over the last 40 years, highlighting the unexpected flexibility of this central process of life. These discoveries and previous work from our laboratory on the evolution of the genetic code inspired this PhD thesis. We explored the hypothesis that synthetic codon ambiguities combined with experimental evolution could lead to the reassignment of rare codons in the yeast S. cerevisiae. For this, we replaced the leucine-CUC decoding tRNA with a mutant serine tRNA, producing yeast strains that incorporate up to 50% of Ser at thousands of Leu-CUC sites, across the entire yeast proteome. Despite the associated high fitness cost, recombinant cells were highly tolerant and capable of adapting to high level Ser incorporation at CUC codons in a long-term evolutionary experiment. We found that adaptation to high Leu-to-Ser mistranslation triggered significant genomic alterations. Indeed, ploidy shifts, increased occurrence of copy number variation (CNVs) events, and aneuploidies were common in the recombinant yeast strains. Transcriptome and translatome analyses identified upregulated ribosomal proteins (RPs) as an unexpected player in the adaptation of yeast to Leu-to-Ser mistranslation at CUC sites. Contrary to expectation, the overexpression of RPs did not increase the protein synthesis rate, and it remains unclear how they contribute to CUC reprogramming or stress tolerance. By achieving 50% of Ser incorporation at Leu-CUC sites on a proteome wide scale, this project pushed the limit of sense codon ambiguity to unprecedented levels, showcasing both its plasticity and the impressive tolerance of yeast to translational errors. It also demonstrates the wide-reaching potential of this approach in synthetic biology and provides new clues about the biology of protein synthesis errors. Moreover, by expanding our understanding of the long-term effects of protein misfolding and aggregation, this work also contributes to the biological basis surrounding the pathophysiology of diseases triggered by these protein alterations.
publishDate 2023
dc.date.none.fl_str_mv 2023-12-20T00:00:00Z
2023-12-20
2025-12-21T00:00:00Z
dc.type.driver.fl_str_mv doctoral thesis
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/41440
url http://hdl.handle.net/10773/41440
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833594561871478784