Using meta-learning to predict performance metrics in machine learning problems
Main Author: | |
---|---|
Publication Date: | 2023 |
Other Authors: | , , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | https://hdl.handle.net/1822/78002 |
Summary: | First published: 29 November 2021 |
id |
RCAP_a20cc42e545ffb0f24a885b88f0c73e7 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/78002 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Using meta-learning to predict performance metrics in machine learning problemserror predictioninteractive machine learningmeta-learningScience & TechnologyFirst published: 29 November 2021Machine learning has been facing significant challenges over the last years, much of which stem from the new characteristics of machine learning problems, such as learning from streaming data or incorporating human feedback into existing datasets and models. In these dynamic scenarios, data change over time and models must adapt. However, new data do not necessarily mean new patterns. The main goal of this paper is to devise a method to predict a model's performance metrics before it is trained, in order to decide whether it is worth it to train it or not. That is, will the model hold significantly better results than the current one? To address this issue, we propose the use of meta-learning. Specifically, we evaluate two different meta-models, one built for a specific machine learning problem, and another built based on many different problems, meant to be a generic meta-model, applicable to virtually any problem. In this paper, we focus only on the prediction of the root mean square error (RMSE). Results show that it is possible to accurately predict the RMSE of future models, event in streaming scenarios. Moreover, results also show that it is possible to reduce the need for re-training models between 60% and 98%, depending on the problem and on the threshold used.This work was supported by the Northern Regional Operational Program, Portugal 2020 and European Union, trough European Regional Development Fund (ERDF) in the scope of project number 39900 - 31/SI/2017, and by FCT – Fundação para a Ciência e Tecnologia within projects UIDB/04728/2020 and UIDB/00319/2020.WileyUniversidade do MinhoCarneiro, DavideGuimaraes, MiguelCarvalho, MarianaNovais, Paulo20232023-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/78002engCarneiro, D., Guimarães, M., Carvalho, M., Novais, P. (2023). Using meta-learning to predict performance metrics in machine learning problems. Expert Systems, 40(1), e12900. https://doi.org/10.1111/exsy.129000266-472010.1111/exsy.12900https://onlinelibrary.wiley.com/doi/10.1111/exsy.12900info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T06:56:03Zoai:repositorium.sdum.uminho.pt:1822/78002Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T16:09:29.031038Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Using meta-learning to predict performance metrics in machine learning problems |
title |
Using meta-learning to predict performance metrics in machine learning problems |
spellingShingle |
Using meta-learning to predict performance metrics in machine learning problems Carneiro, Davide error prediction interactive machine learning meta-learning Science & Technology |
title_short |
Using meta-learning to predict performance metrics in machine learning problems |
title_full |
Using meta-learning to predict performance metrics in machine learning problems |
title_fullStr |
Using meta-learning to predict performance metrics in machine learning problems |
title_full_unstemmed |
Using meta-learning to predict performance metrics in machine learning problems |
title_sort |
Using meta-learning to predict performance metrics in machine learning problems |
author |
Carneiro, Davide |
author_facet |
Carneiro, Davide Guimaraes, Miguel Carvalho, Mariana Novais, Paulo |
author_role |
author |
author2 |
Guimaraes, Miguel Carvalho, Mariana Novais, Paulo |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Carneiro, Davide Guimaraes, Miguel Carvalho, Mariana Novais, Paulo |
dc.subject.por.fl_str_mv |
error prediction interactive machine learning meta-learning Science & Technology |
topic |
error prediction interactive machine learning meta-learning Science & Technology |
description |
First published: 29 November 2021 |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023 2023-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1822/78002 |
url |
https://hdl.handle.net/1822/78002 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Carneiro, D., Guimarães, M., Carvalho, M., Novais, P. (2023). Using meta-learning to predict performance metrics in machine learning problems. Expert Systems, 40(1), e12900. https://doi.org/10.1111/exsy.12900 0266-4720 10.1111/exsy.12900 https://onlinelibrary.wiley.com/doi/10.1111/exsy.12900 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Wiley |
publisher.none.fl_str_mv |
Wiley |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833595768835932160 |