Effects of nanoparticles exposure in the mussel Mytilus Galloprovincialis

Bibliographic Details
Main Author: Gomes, Tânia
Publication Date: 2012
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10400.1/3453
Summary: Nanotechnology is rapidly developing and attracting attention due to the exploitation of the novel materials at the nanoscale for application within biomedical, cosmetic, electronic, energy production and environmental sectors. Increased production and widespread use of these nanomaterials result in their release into the environment; nevertheless, the knowledge of their behaviour in aquatic systems is scarce. Accordingly, this thesis assessed the effects of two commercially available nanoparticles, copper oxide (CuO NPs) and silver nanoparticles (Ag NPs), using mussels Mytilus galloprovincialis as bioindicators. To understand the uptake, accumulation and effects of these NPs, mussels were exposed to a realistic environmental concentration of 10 !g.L-1 of CuO (31 ± 10 nm) and Ag NPs (<100 nm) for 15 days, comparative to their ionic counterparts. NPs were characterized and biomarkers of oxidative stress, metal exposure, genotoxicity and neurotoxicity evaluated in mussel tissues. To identify pathways of NP exposure and detect new biomarkers, a proteomic approach was undertaken. Oxidative stress is the major NP-induced toxicity, but with distinct modes of action. Gills are more susceptible to oxidative stress while the digestive gland is the preferential site for NPs accumulation. The oxidative (enzymatic activation/inhibition, metallothionein induction and lipid peroxidation), genotoxic (DNA strand breaks) and neurotoxic (acetylcholinesterase inhibition) changes suggest that NPs toxicity is associated with ROS that induced a cascade of pathways (via nucleus and mitochondria) that ultimately lead to apoptosis but by different mechanisms. New biomarkers candidates were identified: caspase 3/7-1, cathepsin-L and zinc-finger protein for CuO NPs and precollagen-P, major vault protein and ras partial for Ag NPs exposure. Overall, these results show that even though oxidative stress and apoptosis are similar outcomes for NP toxicity, particle composition, size, solubility, aggregation and chemistry are key elements for determining their mode of action. This study contributed to understand the CuO and Ag NPs behaviour, bioavailability and toxicity in aquatic systems and their uptake and effects in filter-feeding organisms.
id RCAP_a1e6345ce8a2d4edca2f7975330c4d49
oai_identifier_str oai:sapientia.ualg.pt:10400.1/3453
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Effects of nanoparticles exposure in the mussel Mytilus GalloprovincialisEcotoxicologiaBiomarcadoresStress oxidativoMytilus galloprovincialisNanotechnology is rapidly developing and attracting attention due to the exploitation of the novel materials at the nanoscale for application within biomedical, cosmetic, electronic, energy production and environmental sectors. Increased production and widespread use of these nanomaterials result in their release into the environment; nevertheless, the knowledge of their behaviour in aquatic systems is scarce. Accordingly, this thesis assessed the effects of two commercially available nanoparticles, copper oxide (CuO NPs) and silver nanoparticles (Ag NPs), using mussels Mytilus galloprovincialis as bioindicators. To understand the uptake, accumulation and effects of these NPs, mussels were exposed to a realistic environmental concentration of 10 !g.L-1 of CuO (31 ± 10 nm) and Ag NPs (<100 nm) for 15 days, comparative to their ionic counterparts. NPs were characterized and biomarkers of oxidative stress, metal exposure, genotoxicity and neurotoxicity evaluated in mussel tissues. To identify pathways of NP exposure and detect new biomarkers, a proteomic approach was undertaken. Oxidative stress is the major NP-induced toxicity, but with distinct modes of action. Gills are more susceptible to oxidative stress while the digestive gland is the preferential site for NPs accumulation. The oxidative (enzymatic activation/inhibition, metallothionein induction and lipid peroxidation), genotoxic (DNA strand breaks) and neurotoxic (acetylcholinesterase inhibition) changes suggest that NPs toxicity is associated with ROS that induced a cascade of pathways (via nucleus and mitochondria) that ultimately lead to apoptosis but by different mechanisms. New biomarkers candidates were identified: caspase 3/7-1, cathepsin-L and zinc-finger protein for CuO NPs and precollagen-P, major vault protein and ras partial for Ag NPs exposure. Overall, these results show that even though oxidative stress and apoptosis are similar outcomes for NP toxicity, particle composition, size, solubility, aggregation and chemistry are key elements for determining their mode of action. This study contributed to understand the CuO and Ag NPs behaviour, bioavailability and toxicity in aquatic systems and their uptake and effects in filter-feeding organisms.Bebianno, Maria João da Anunciação FrancoSapientiaGomes, Tânia2014-02-13T12:27:25Z20122012-01-01T00:00:00Zdoctoral thesisinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10400.1/3453urn:tid:101254326enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-18T17:11:52Zoai:sapientia.ualg.pt:10400.1/3453Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T20:13:17.136838Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Effects of nanoparticles exposure in the mussel Mytilus Galloprovincialis
title Effects of nanoparticles exposure in the mussel Mytilus Galloprovincialis
spellingShingle Effects of nanoparticles exposure in the mussel Mytilus Galloprovincialis
Gomes, Tânia
Ecotoxicologia
Biomarcadores
Stress oxidativo
Mytilus galloprovincialis
title_short Effects of nanoparticles exposure in the mussel Mytilus Galloprovincialis
title_full Effects of nanoparticles exposure in the mussel Mytilus Galloprovincialis
title_fullStr Effects of nanoparticles exposure in the mussel Mytilus Galloprovincialis
title_full_unstemmed Effects of nanoparticles exposure in the mussel Mytilus Galloprovincialis
title_sort Effects of nanoparticles exposure in the mussel Mytilus Galloprovincialis
author Gomes, Tânia
author_facet Gomes, Tânia
author_role author
dc.contributor.none.fl_str_mv Bebianno, Maria João da Anunciação Franco
Sapientia
dc.contributor.author.fl_str_mv Gomes, Tânia
dc.subject.por.fl_str_mv Ecotoxicologia
Biomarcadores
Stress oxidativo
Mytilus galloprovincialis
topic Ecotoxicologia
Biomarcadores
Stress oxidativo
Mytilus galloprovincialis
description Nanotechnology is rapidly developing and attracting attention due to the exploitation of the novel materials at the nanoscale for application within biomedical, cosmetic, electronic, energy production and environmental sectors. Increased production and widespread use of these nanomaterials result in their release into the environment; nevertheless, the knowledge of their behaviour in aquatic systems is scarce. Accordingly, this thesis assessed the effects of two commercially available nanoparticles, copper oxide (CuO NPs) and silver nanoparticles (Ag NPs), using mussels Mytilus galloprovincialis as bioindicators. To understand the uptake, accumulation and effects of these NPs, mussels were exposed to a realistic environmental concentration of 10 !g.L-1 of CuO (31 ± 10 nm) and Ag NPs (<100 nm) for 15 days, comparative to their ionic counterparts. NPs were characterized and biomarkers of oxidative stress, metal exposure, genotoxicity and neurotoxicity evaluated in mussel tissues. To identify pathways of NP exposure and detect new biomarkers, a proteomic approach was undertaken. Oxidative stress is the major NP-induced toxicity, but with distinct modes of action. Gills are more susceptible to oxidative stress while the digestive gland is the preferential site for NPs accumulation. The oxidative (enzymatic activation/inhibition, metallothionein induction and lipid peroxidation), genotoxic (DNA strand breaks) and neurotoxic (acetylcholinesterase inhibition) changes suggest that NPs toxicity is associated with ROS that induced a cascade of pathways (via nucleus and mitochondria) that ultimately lead to apoptosis but by different mechanisms. New biomarkers candidates were identified: caspase 3/7-1, cathepsin-L and zinc-finger protein for CuO NPs and precollagen-P, major vault protein and ras partial for Ag NPs exposure. Overall, these results show that even though oxidative stress and apoptosis are similar outcomes for NP toxicity, particle composition, size, solubility, aggregation and chemistry are key elements for determining their mode of action. This study contributed to understand the CuO and Ag NPs behaviour, bioavailability and toxicity in aquatic systems and their uptake and effects in filter-feeding organisms.
publishDate 2012
dc.date.none.fl_str_mv 2012
2012-01-01T00:00:00Z
2014-02-13T12:27:25Z
dc.type.driver.fl_str_mv doctoral thesis
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.1/3453
urn:tid:101254326
url http://hdl.handle.net/10400.1/3453
identifier_str_mv urn:tid:101254326
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833598555816722432