Quantitative image analysis as a robust tool to assess effluent quality from an aerobic granular sludge system treating industrial wastewater
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2022 |
| Outros Autores: | , , , , , |
| Tipo de documento: | Artigo |
| Idioma: | eng |
| Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Texto Completo: | https://hdl.handle.net/1822/75629 |
Resumo: | Supplementary data to this article can be found online at https://doi.org/10.1016/j.chemosphere.2021.132773. |
| id |
RCAP_a19d792d1b1225bff3963c742c915193 |
|---|---|
| oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/75629 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Quantitative image analysis as a robust tool to assess effluent quality from an aerobic granular sludge system treating industrial wastewaterAerobic granular sludgeQuantitative image analysisPartial least squaresSalinityEffluent quality parametersFood industry wastewaterSuspended and granular biomass fractionsCiências Naturais::Ciências BiológicasScience & TechnologySupplementary data to this article can be found online at https://doi.org/10.1016/j.chemosphere.2021.132773.Quantitative image analysis (QIA) is a simple and automated method for process monitoring, complementary to chemical analysis, that when coupled to mathematical modelling allows associating changes in the biomass to several operational parameters. The majority of the research regarding the use of QIA has been carried out using synthetic wastewater and applied to activated sludge systems, while there is still a lack of knowledge regarding the application of QIA in the monitoring of aerobic granular sludge (AGS) systems. In this work, chemical oxygen demand (COD), ammonium (NNH4+), nitrite (NNO2-), nitrate (NNO3-), salinity (Cl), and total suspended solids (TSS) levels present in the effluent of an AGS system treating fish canning wastewater were successfully associated to QIA data, from both suspended and granular biomass fractions by partial least squares models. The correlation between physical-chemical parameters and QIA data allowed obtaining good assessment results for COD (R2 of 0.94), NNH4+ (R2 of 0.98), NNO2- (R2 of 0.96), NNO3- (R2 of 0.95), Cl (R2 of 0.98), and TSS (R2 of 0.94). While the COD and NNO2- assessment models were mostly correlated to the granular fraction QIA data, the suspended fraction was highly relevant for NNH4+ assessment. The NNO3-, Cl and TSS assessment benefited from the use of both biomass fractions (suspended and granular) QIA data, indicating the importance of the balance between the suspended and granular fractions in AGS systems and its analysis. This study provides a complementary approach to assess effluent quality parameters which can improve wastewater treatment plants monitoring and control, with a more cost-effective and environmentally friendly procedure, while avoiding daily physical-chemical analysis.The authors thank the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding to the research units CEB (UIDB/04469/2020) and CBQF (UIDB/50016/2020) and the project AGeNT - PTDC/BTA-BTA/31264/2017 (POCI-01-0145-FEDER-031264). The authors wish to thank the company Aguas do Tejo Atlantico, S.A. for supplying the granules. Daniela P. Mesquita and Catarina L. Amorim thank FCT for funding through program DL 57/2016 – Norma transitoria.info:eu-repo/semantics/publishedVersionElsevierUniversidade do MinhoCosta, Joana Sofia GomesPaulo, Ana M. S.Amorim, Catarina L.Amaral, A. LuísCastro, Paula M. L.Ferreira, Eugénio C.Mesquita, D. P.2022-032022-03-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/75629engCosta, J. G., Paulo, A. M. S., Amorim, C. L., Amaral, A. L., Castro, P. M. L., Ferreira, E. C., & Mesquita, D. P. (2022, March). Quantitative image analysis as a robust tool to assess effluent quality from an aerobic granular sludge system treating industrial wastewater. Chemosphere. Elsevier BV. http://doi.org/10.1016/j.chemosphere.2021.1327730045-653510.1016/j.chemosphere.2021.13277334742770132773https://www.sciencedirect.com/science/article/abs/pii/S0045653521032458info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-04-12T04:55:01Zoai:repositorium.sdum.uminho.pt:1822/75629Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T15:47:11.456723Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Quantitative image analysis as a robust tool to assess effluent quality from an aerobic granular sludge system treating industrial wastewater |
| title |
Quantitative image analysis as a robust tool to assess effluent quality from an aerobic granular sludge system treating industrial wastewater |
| spellingShingle |
Quantitative image analysis as a robust tool to assess effluent quality from an aerobic granular sludge system treating industrial wastewater Costa, Joana Sofia Gomes Aerobic granular sludge Quantitative image analysis Partial least squares Salinity Effluent quality parameters Food industry wastewater Suspended and granular biomass fractions Ciências Naturais::Ciências Biológicas Science & Technology |
| title_short |
Quantitative image analysis as a robust tool to assess effluent quality from an aerobic granular sludge system treating industrial wastewater |
| title_full |
Quantitative image analysis as a robust tool to assess effluent quality from an aerobic granular sludge system treating industrial wastewater |
| title_fullStr |
Quantitative image analysis as a robust tool to assess effluent quality from an aerobic granular sludge system treating industrial wastewater |
| title_full_unstemmed |
Quantitative image analysis as a robust tool to assess effluent quality from an aerobic granular sludge system treating industrial wastewater |
| title_sort |
Quantitative image analysis as a robust tool to assess effluent quality from an aerobic granular sludge system treating industrial wastewater |
| author |
Costa, Joana Sofia Gomes |
| author_facet |
Costa, Joana Sofia Gomes Paulo, Ana M. S. Amorim, Catarina L. Amaral, A. Luís Castro, Paula M. L. Ferreira, Eugénio C. Mesquita, D. P. |
| author_role |
author |
| author2 |
Paulo, Ana M. S. Amorim, Catarina L. Amaral, A. Luís Castro, Paula M. L. Ferreira, Eugénio C. Mesquita, D. P. |
| author2_role |
author author author author author author |
| dc.contributor.none.fl_str_mv |
Universidade do Minho |
| dc.contributor.author.fl_str_mv |
Costa, Joana Sofia Gomes Paulo, Ana M. S. Amorim, Catarina L. Amaral, A. Luís Castro, Paula M. L. Ferreira, Eugénio C. Mesquita, D. P. |
| dc.subject.por.fl_str_mv |
Aerobic granular sludge Quantitative image analysis Partial least squares Salinity Effluent quality parameters Food industry wastewater Suspended and granular biomass fractions Ciências Naturais::Ciências Biológicas Science & Technology |
| topic |
Aerobic granular sludge Quantitative image analysis Partial least squares Salinity Effluent quality parameters Food industry wastewater Suspended and granular biomass fractions Ciências Naturais::Ciências Biológicas Science & Technology |
| description |
Supplementary data to this article can be found online at https://doi.org/10.1016/j.chemosphere.2021.132773. |
| publishDate |
2022 |
| dc.date.none.fl_str_mv |
2022-03 2022-03-01T00:00:00Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1822/75629 |
| url |
https://hdl.handle.net/1822/75629 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
Costa, J. G., Paulo, A. M. S., Amorim, C. L., Amaral, A. L., Castro, P. M. L., Ferreira, E. C., & Mesquita, D. P. (2022, March). Quantitative image analysis as a robust tool to assess effluent quality from an aerobic granular sludge system treating industrial wastewater. Chemosphere. Elsevier BV. http://doi.org/10.1016/j.chemosphere.2021.132773 0045-6535 10.1016/j.chemosphere.2021.132773 34742770 132773 https://www.sciencedirect.com/science/article/abs/pii/S0045653521032458 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier |
| publisher.none.fl_str_mv |
Elsevier |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833595537902796800 |