Portfolio implementation risk management using evolutionary multiobjective optimization
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2017 |
| Outros Autores: | , , |
| Tipo de documento: | Artigo |
| Idioma: | eng |
| Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Texto Completo: | http://hdl.handle.net/1822/53022 |
Resumo: | Portfoliomanagementbasedonmean-varianceportfoliooptimizationissubjecttodifferent sources of uncertainty. In addition to those related to the quality of parameter estimates used in the optimization process, investors face a portfolio implementation risk. The potential temporary discrepancybetweentargetandpresentportfolios,causedbytradingstrategies,mayexposeinvestors to undesired risks. This study proposes an evolutionary multiobjective optimization algorithm aiming at regions with solutions more tolerant to these deviations and, therefore, more reliable. The proposed approach incorporates a user’s preference and seeks a fine-grained approximation of the most relevant efficient region. The computational experiments performed in this study are based on a cardinality-constrained problem with investment limits for eight broad-category indexes and 15 years of data. The obtained results show the ability of the proposed approach to address the robustness issue and to support decision making by providing a preferred part of the efficient set. The results reveal that the obtained solutions also exhibit a higher tolerance to prediction errors in asset returns and variance–covariance matrix. |
| id |
RCAP_9e5adab1ac8d57b71a27e3a2732f4362 |
|---|---|
| oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/53022 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Portfolio implementation risk management using evolutionary multiobjective optimizationrobustnessmulti-objective optimizationevolutionary computationportfolio optimizationCiências Naturais::Ciências da Computação e da InformaçãoScience & TechnologyPortfoliomanagementbasedonmean-varianceportfoliooptimizationissubjecttodifferent sources of uncertainty. In addition to those related to the quality of parameter estimates used in the optimization process, investors face a portfolio implementation risk. The potential temporary discrepancybetweentargetandpresentportfolios,causedbytradingstrategies,mayexposeinvestors to undesired risks. This study proposes an evolutionary multiobjective optimization algorithm aiming at regions with solutions more tolerant to these deviations and, therefore, more reliable. The proposed approach incorporates a user’s preference and seeks a fine-grained approximation of the most relevant efficient region. The computational experiments performed in this study are based on a cardinality-constrained problem with investment limits for eight broad-category indexes and 15 years of data. The obtained results show the ability of the proposed approach to address the robustness issue and to support decision making by providing a preferred part of the efficient set. The results reveal that the obtained solutions also exhibit a higher tolerance to prediction errors in asset returns and variance–covariance matrix.Sandra Garcia-Rodriguez and David Quintana acknowledge financial support granted by the Spanish Ministry of Economy and Competitivity under grant ENE2014-56126-C2-2-R. Roman Denysiuk and Antonio Gaspar-Cunha were supported by the Portuguese Foundation for Science and Technology under grant PEst-C/CTM/LA0025/2013 (Projecto Estratégico-LA 25-2013-2014-Strategic Project-LA 25-2013-2014).info:eu-repo/semantics/publishedVersionMDPI AGUniversidade do MinhoQuintana, DavidDenysiuk, RomanGarcia-Rodriguez, SandraGaspar-Cunha, A.20172017-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/53022eng2076-341710.3390/app7101079info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T07:08:43Zoai:repositorium.sdum.uminho.pt:1822/53022Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T16:16:59.759890Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Portfolio implementation risk management using evolutionary multiobjective optimization |
| title |
Portfolio implementation risk management using evolutionary multiobjective optimization |
| spellingShingle |
Portfolio implementation risk management using evolutionary multiobjective optimization Quintana, David robustness multi-objective optimization evolutionary computation portfolio optimization Ciências Naturais::Ciências da Computação e da Informação Science & Technology |
| title_short |
Portfolio implementation risk management using evolutionary multiobjective optimization |
| title_full |
Portfolio implementation risk management using evolutionary multiobjective optimization |
| title_fullStr |
Portfolio implementation risk management using evolutionary multiobjective optimization |
| title_full_unstemmed |
Portfolio implementation risk management using evolutionary multiobjective optimization |
| title_sort |
Portfolio implementation risk management using evolutionary multiobjective optimization |
| author |
Quintana, David |
| author_facet |
Quintana, David Denysiuk, Roman Garcia-Rodriguez, Sandra Gaspar-Cunha, A. |
| author_role |
author |
| author2 |
Denysiuk, Roman Garcia-Rodriguez, Sandra Gaspar-Cunha, A. |
| author2_role |
author author author |
| dc.contributor.none.fl_str_mv |
Universidade do Minho |
| dc.contributor.author.fl_str_mv |
Quintana, David Denysiuk, Roman Garcia-Rodriguez, Sandra Gaspar-Cunha, A. |
| dc.subject.por.fl_str_mv |
robustness multi-objective optimization evolutionary computation portfolio optimization Ciências Naturais::Ciências da Computação e da Informação Science & Technology |
| topic |
robustness multi-objective optimization evolutionary computation portfolio optimization Ciências Naturais::Ciências da Computação e da Informação Science & Technology |
| description |
Portfoliomanagementbasedonmean-varianceportfoliooptimizationissubjecttodifferent sources of uncertainty. In addition to those related to the quality of parameter estimates used in the optimization process, investors face a portfolio implementation risk. The potential temporary discrepancybetweentargetandpresentportfolios,causedbytradingstrategies,mayexposeinvestors to undesired risks. This study proposes an evolutionary multiobjective optimization algorithm aiming at regions with solutions more tolerant to these deviations and, therefore, more reliable. The proposed approach incorporates a user’s preference and seeks a fine-grained approximation of the most relevant efficient region. The computational experiments performed in this study are based on a cardinality-constrained problem with investment limits for eight broad-category indexes and 15 years of data. The obtained results show the ability of the proposed approach to address the robustness issue and to support decision making by providing a preferred part of the efficient set. The results reveal that the obtained solutions also exhibit a higher tolerance to prediction errors in asset returns and variance–covariance matrix. |
| publishDate |
2017 |
| dc.date.none.fl_str_mv |
2017 2017-01-01T00:00:00Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/53022 |
| url |
http://hdl.handle.net/1822/53022 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
2076-3417 10.3390/app7101079 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
MDPI AG |
| publisher.none.fl_str_mv |
MDPI AG |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833595850625908736 |