Portfolio implementation risk management using evolutionary multiobjective optimization

Bibliographic Details
Main Author: Quintana, David
Publication Date: 2017
Other Authors: Denysiuk, Roman, Garcia-Rodriguez, Sandra, Gaspar-Cunha, A.
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/1822/53022
Summary: Portfoliomanagementbasedonmean-varianceportfoliooptimizationissubjecttodifferent sources of uncertainty. In addition to those related to the quality of parameter estimates used in the optimization process, investors face a portfolio implementation risk. The potential temporary discrepancybetweentargetandpresentportfolios,causedbytradingstrategies,mayexposeinvestors to undesired risks. This study proposes an evolutionary multiobjective optimization algorithm aiming at regions with solutions more tolerant to these deviations and, therefore, more reliable. The proposed approach incorporates a user’s preference and seeks a fine-grained approximation of the most relevant efficient region. The computational experiments performed in this study are based on a cardinality-constrained problem with investment limits for eight broad-category indexes and 15 years of data. The obtained results show the ability of the proposed approach to address the robustness issue and to support decision making by providing a preferred part of the efficient set. The results reveal that the obtained solutions also exhibit a higher tolerance to prediction errors in asset returns and variance–covariance matrix.
id RCAP_9e5adab1ac8d57b71a27e3a2732f4362
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/53022
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Portfolio implementation risk management using evolutionary multiobjective optimizationrobustnessmulti-objective optimizationevolutionary computationportfolio optimizationCiências Naturais::Ciências da Computação e da InformaçãoScience & TechnologyPortfoliomanagementbasedonmean-varianceportfoliooptimizationissubjecttodifferent sources of uncertainty. In addition to those related to the quality of parameter estimates used in the optimization process, investors face a portfolio implementation risk. The potential temporary discrepancybetweentargetandpresentportfolios,causedbytradingstrategies,mayexposeinvestors to undesired risks. This study proposes an evolutionary multiobjective optimization algorithm aiming at regions with solutions more tolerant to these deviations and, therefore, more reliable. The proposed approach incorporates a user’s preference and seeks a fine-grained approximation of the most relevant efficient region. The computational experiments performed in this study are based on a cardinality-constrained problem with investment limits for eight broad-category indexes and 15 years of data. The obtained results show the ability of the proposed approach to address the robustness issue and to support decision making by providing a preferred part of the efficient set. The results reveal that the obtained solutions also exhibit a higher tolerance to prediction errors in asset returns and variance–covariance matrix.Sandra Garcia-Rodriguez and David Quintana acknowledge financial support granted by the Spanish Ministry of Economy and Competitivity under grant ENE2014-56126-C2-2-R. Roman Denysiuk and Antonio Gaspar-Cunha were supported by the Portuguese Foundation for Science and Technology under grant PEst-C/CTM/LA0025/2013 (Projecto Estratégico-LA 25-2013-2014-Strategic Project-LA 25-2013-2014).info:eu-repo/semantics/publishedVersionMDPI AGUniversidade do MinhoQuintana, DavidDenysiuk, RomanGarcia-Rodriguez, SandraGaspar-Cunha, A.20172017-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/53022eng2076-341710.3390/app7101079info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T07:08:43Zoai:repositorium.sdum.uminho.pt:1822/53022Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T16:16:59.759890Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Portfolio implementation risk management using evolutionary multiobjective optimization
title Portfolio implementation risk management using evolutionary multiobjective optimization
spellingShingle Portfolio implementation risk management using evolutionary multiobjective optimization
Quintana, David
robustness
multi-objective optimization
evolutionary computation
portfolio optimization
Ciências Naturais::Ciências da Computação e da Informação
Science & Technology
title_short Portfolio implementation risk management using evolutionary multiobjective optimization
title_full Portfolio implementation risk management using evolutionary multiobjective optimization
title_fullStr Portfolio implementation risk management using evolutionary multiobjective optimization
title_full_unstemmed Portfolio implementation risk management using evolutionary multiobjective optimization
title_sort Portfolio implementation risk management using evolutionary multiobjective optimization
author Quintana, David
author_facet Quintana, David
Denysiuk, Roman
Garcia-Rodriguez, Sandra
Gaspar-Cunha, A.
author_role author
author2 Denysiuk, Roman
Garcia-Rodriguez, Sandra
Gaspar-Cunha, A.
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Quintana, David
Denysiuk, Roman
Garcia-Rodriguez, Sandra
Gaspar-Cunha, A.
dc.subject.por.fl_str_mv robustness
multi-objective optimization
evolutionary computation
portfolio optimization
Ciências Naturais::Ciências da Computação e da Informação
Science & Technology
topic robustness
multi-objective optimization
evolutionary computation
portfolio optimization
Ciências Naturais::Ciências da Computação e da Informação
Science & Technology
description Portfoliomanagementbasedonmean-varianceportfoliooptimizationissubjecttodifferent sources of uncertainty. In addition to those related to the quality of parameter estimates used in the optimization process, investors face a portfolio implementation risk. The potential temporary discrepancybetweentargetandpresentportfolios,causedbytradingstrategies,mayexposeinvestors to undesired risks. This study proposes an evolutionary multiobjective optimization algorithm aiming at regions with solutions more tolerant to these deviations and, therefore, more reliable. The proposed approach incorporates a user’s preference and seeks a fine-grained approximation of the most relevant efficient region. The computational experiments performed in this study are based on a cardinality-constrained problem with investment limits for eight broad-category indexes and 15 years of data. The obtained results show the ability of the proposed approach to address the robustness issue and to support decision making by providing a preferred part of the efficient set. The results reveal that the obtained solutions also exhibit a higher tolerance to prediction errors in asset returns and variance–covariance matrix.
publishDate 2017
dc.date.none.fl_str_mv 2017
2017-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/53022
url http://hdl.handle.net/1822/53022
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2076-3417
10.3390/app7101079
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv MDPI AG
publisher.none.fl_str_mv MDPI AG
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833595850625908736