Probabilistic Egomotion for Stereo Visual Odometry
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2015 |
| Outros Autores: | , |
| Tipo de documento: | Artigo |
| Idioma: | eng |
| Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Texto Completo: | http://repositorio.inesctec.pt/handle/123456789/5882 http://dx.doi.org/10.1007/s10846-014-0054-5 |
Resumo: | We present a novel approach of Stereo Visual Odometry for vehicles equipped with calibrated stereo cameras. We combine a dense probabilistic 5D egomotion estimation method with a sparse keypoint based stereo approach to provide high quality estimates of vehicle's angular and linear velocities. To validate our approach, we perform two sets of experiments with a well known benchmarking dataset. First, we assess the quality of the raw velocity estimates in comparison to classical pose estimation algorithms. Second, we added to our method's instantaneous velocity estimates a Kalman Filter and compare its performance with a well known open source stereo Visual Odometry library. The presented results compare favorably with state-of-the-art approaches, mainly in the estimation of the angular velocities, where significant improvements are achieved. |
| id |
RCAP_9dd4377e88fb1cae5da9aa5d8c1d1ea9 |
|---|---|
| oai_identifier_str |
oai:repositorio.inesctec.pt:123456789/5882 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Probabilistic Egomotion for Stereo Visual OdometryWe present a novel approach of Stereo Visual Odometry for vehicles equipped with calibrated stereo cameras. We combine a dense probabilistic 5D egomotion estimation method with a sparse keypoint based stereo approach to provide high quality estimates of vehicle's angular and linear velocities. To validate our approach, we perform two sets of experiments with a well known benchmarking dataset. First, we assess the quality of the raw velocity estimates in comparison to classical pose estimation algorithms. Second, we added to our method's instantaneous velocity estimates a Kalman Filter and compare its performance with a well known open source stereo Visual Odometry library. The presented results compare favorably with state-of-the-art approaches, mainly in the estimation of the angular velocities, where significant improvements are achieved.2018-01-10T15:27:01Z2015-01-01T00:00:00Z2015info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://repositorio.inesctec.pt/handle/123456789/5882http://dx.doi.org/10.1007/s10846-014-0054-5engHugo Miguel SilvaBernardino,AEduardo Silvainfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-10-12T02:22:23Zoai:repositorio.inesctec.pt:123456789/5882Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T18:58:13.565206Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Probabilistic Egomotion for Stereo Visual Odometry |
| title |
Probabilistic Egomotion for Stereo Visual Odometry |
| spellingShingle |
Probabilistic Egomotion for Stereo Visual Odometry Hugo Miguel Silva |
| title_short |
Probabilistic Egomotion for Stereo Visual Odometry |
| title_full |
Probabilistic Egomotion for Stereo Visual Odometry |
| title_fullStr |
Probabilistic Egomotion for Stereo Visual Odometry |
| title_full_unstemmed |
Probabilistic Egomotion for Stereo Visual Odometry |
| title_sort |
Probabilistic Egomotion for Stereo Visual Odometry |
| author |
Hugo Miguel Silva |
| author_facet |
Hugo Miguel Silva Bernardino,A Eduardo Silva |
| author_role |
author |
| author2 |
Bernardino,A Eduardo Silva |
| author2_role |
author author |
| dc.contributor.author.fl_str_mv |
Hugo Miguel Silva Bernardino,A Eduardo Silva |
| description |
We present a novel approach of Stereo Visual Odometry for vehicles equipped with calibrated stereo cameras. We combine a dense probabilistic 5D egomotion estimation method with a sparse keypoint based stereo approach to provide high quality estimates of vehicle's angular and linear velocities. To validate our approach, we perform two sets of experiments with a well known benchmarking dataset. First, we assess the quality of the raw velocity estimates in comparison to classical pose estimation algorithms. Second, we added to our method's instantaneous velocity estimates a Kalman Filter and compare its performance with a well known open source stereo Visual Odometry library. The presented results compare favorably with state-of-the-art approaches, mainly in the estimation of the angular velocities, where significant improvements are achieved. |
| publishDate |
2015 |
| dc.date.none.fl_str_mv |
2015-01-01T00:00:00Z 2015 2018-01-10T15:27:01Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://repositorio.inesctec.pt/handle/123456789/5882 http://dx.doi.org/10.1007/s10846-014-0054-5 |
| url |
http://repositorio.inesctec.pt/handle/123456789/5882 http://dx.doi.org/10.1007/s10846-014-0054-5 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833597788503408640 |