Source rupture process, directivity and and Coulomb stress change of the 12 January 2010 (Port-au-Prince Haiti, Mw7.0) earthquake

Bibliographic Details
Main Author: Borges, JF
Publication Date: 2010
Other Authors: Caldeira, B, Bezzeghoud, M
Format: Conference object
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10174/6490
Summary: The Haiti earthquake occurred on Tuesday, January 12, 2010 at 21:53:10 UTC. Its epi- center was at 18.46 degrees North, 72.53 degrees West, about 25 km WSW of Haiti’s capital, Port-au-Prince, along the tectonic boundary between Caribbean and North America plate dominated by left-lateral stri- ke slip motion and compression with 2 cm/yr of slip velocity eastward with respect to the North America plate. The earthquake was relatively shallow (about 13 km depth) with Mw 7.0 and CMT mechanism solution indica- ting left-lateral strike slip movement with a fault plane oriented toward the WNW-ESE. More than 10 aftershocks ranging from 5.0 to 5.9 in magnitude struck the area in hours following the main shock. Most of these af- tershocks have occurred to the west of the mainshock in the Mirogoane Lakes region and its distribution suggests that the length of the rupture was around 70 km. Rupture velocity and direction was constrained by using the directivity effect determined from broad-band waveforms recorded at regio- nal and teleseismic distances using DIRDOP computational code (DIRectivity DOPpler effect) [1]. The Results show that the rup- ture spread mainly from WNW to ESE with a velocity of 2.5 km/s. In order to obtain the spatiotemporal slip distribution of a fi- nite rupture model we have used teleseismic body wave and the Kikuchi and Kanamori’s method [2]. The inversion show complex source time function with a total scalar seismic moment of 2.2 x 1019Nm (Mw=6.9) a source duration of about 18 sec with a main energy relesea in the first 13 sec. Finally, we compared a map of aftershocks with the Coulomb stress changes caused by the main shock in the region [3]. [1] Kikuchi, M., and Kanamori, H., 1982, Inversion of com- plex body waves: Bull. Seismol. Soc. Am., v. 72, p. 491-506. [2] Caldeira B., Bezzeghoud M, Borges JF, 2009; DIRDOP: a directivity ap- proach to determining the seismic rupture velocity vector. J Seismology, DOI 10.1007/ s10950-009-9183-x [3] King, G. C. P., Stein, R. S. y Lin, J, 1994, Static stress changes and the triggering of earthquakes. Bull. Seismol. Soc. Am. 84,935-953. More than 10 aftershocks ranging from 5.0 to 5.9 in magnitude struck the area in hours following the main shock. Most of these aftershocks have occurred to the west of the mainshock in the Mirogoane Lakes region and its distribution suggests that the length of the rupture was around 70 km. In order to obtain the spatiotemporal slip distribution of a finite rupture model we have used teleseismic body wave and the Kikuchi and Kanamori's method [1]. Rupture velocity was constrained by using the directivity effect determined from waveforms recorded at regional and teleseismic distances [2]. The spatiotemporal slip estimated points to a unilateral rupture that propagates from WNW to ESE with a rupture velocity of 2.5 km/s. Finally, we compared a map of aftershocks with the Coulomb stress changes caused by the event in the region [3]. [1]- Kikuchi, M., and Kanamori, H., 1982, Inversion of complex body waves: Bull. Seismol. Soc. Am., v. 72, p. 491-506. [2] Caldeira B., Bezzeghoud M, Borges JF, 2009; DIRDOP: a directivity approach to determining the seismic rupture velocity vector. J Seismology, DOI 10.1007/s10950-009-9183-x [3] -King, G. C. P., Stein, R. S. y Lin, J, 1994, Static stress changes and the triggering of earthquakes. Bull. Seismol. Soc. Am. 84,935-953.
id RCAP_9b8a57f6bb218fa840bf4b99d466717f
oai_identifier_str oai:dspace.uevora.pt:10174/6490
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Source rupture process, directivity and and Coulomb stress change of the 12 January 2010 (Port-au-Prince Haiti, Mw7.0) earthquakeHaitiSeismic SourcesThe Haiti earthquake occurred on Tuesday, January 12, 2010 at 21:53:10 UTC. Its epi- center was at 18.46 degrees North, 72.53 degrees West, about 25 km WSW of Haiti’s capital, Port-au-Prince, along the tectonic boundary between Caribbean and North America plate dominated by left-lateral stri- ke slip motion and compression with 2 cm/yr of slip velocity eastward with respect to the North America plate. The earthquake was relatively shallow (about 13 km depth) with Mw 7.0 and CMT mechanism solution indica- ting left-lateral strike slip movement with a fault plane oriented toward the WNW-ESE. More than 10 aftershocks ranging from 5.0 to 5.9 in magnitude struck the area in hours following the main shock. Most of these af- tershocks have occurred to the west of the mainshock in the Mirogoane Lakes region and its distribution suggests that the length of the rupture was around 70 km. Rupture velocity and direction was constrained by using the directivity effect determined from broad-band waveforms recorded at regio- nal and teleseismic distances using DIRDOP computational code (DIRectivity DOPpler effect) [1]. The Results show that the rup- ture spread mainly from WNW to ESE with a velocity of 2.5 km/s. In order to obtain the spatiotemporal slip distribution of a fi- nite rupture model we have used teleseismic body wave and the Kikuchi and Kanamori’s method [2]. The inversion show complex source time function with a total scalar seismic moment of 2.2 x 1019Nm (Mw=6.9) a source duration of about 18 sec with a main energy relesea in the first 13 sec. Finally, we compared a map of aftershocks with the Coulomb stress changes caused by the main shock in the region [3]. [1] Kikuchi, M., and Kanamori, H., 1982, Inversion of com- plex body waves: Bull. Seismol. Soc. Am., v. 72, p. 491-506. [2] Caldeira B., Bezzeghoud M, Borges JF, 2009; DIRDOP: a directivity ap- proach to determining the seismic rupture velocity vector. J Seismology, DOI 10.1007/ s10950-009-9183-x [3] King, G. C. P., Stein, R. S. y Lin, J, 1994, Static stress changes and the triggering of earthquakes. Bull. Seismol. Soc. Am. 84,935-953. More than 10 aftershocks ranging from 5.0 to 5.9 in magnitude struck the area in hours following the main shock. Most of these aftershocks have occurred to the west of the mainshock in the Mirogoane Lakes region and its distribution suggests that the length of the rupture was around 70 km. In order to obtain the spatiotemporal slip distribution of a finite rupture model we have used teleseismic body wave and the Kikuchi and Kanamori's method [1]. Rupture velocity was constrained by using the directivity effect determined from waveforms recorded at regional and teleseismic distances [2]. The spatiotemporal slip estimated points to a unilateral rupture that propagates from WNW to ESE with a rupture velocity of 2.5 km/s. Finally, we compared a map of aftershocks with the Coulomb stress changes caused by the event in the region [3]. [1]- Kikuchi, M., and Kanamori, H., 1982, Inversion of complex body waves: Bull. Seismol. Soc. Am., v. 72, p. 491-506. [2] Caldeira B., Bezzeghoud M, Borges JF, 2009; DIRDOP: a directivity approach to determining the seismic rupture velocity vector. J Seismology, DOI 10.1007/s10950-009-9183-x [3] -King, G. C. P., Stein, R. S. y Lin, J, 1994, Static stress changes and the triggering of earthquakes. Bull. Seismol. Soc. Am. 84,935-953.General Assembly of the European Seismological Commission (ESC), September, Montpelier, France2012-12-05T21:36:57Z2012-12-052010-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjecthttp://hdl.handle.net/10174/6490http://hdl.handle.net/10174/6490engBorges, JF, Caldeira, B. And Mourad Bezzegoud, 2010. Source rupture process, directivity and and Coulomb stress change of the 12 January 2010 (Port-au-Prince Haiti, Mw7.0) earthquake. General Assembly of the European Seismological Commission (ESC), September, Montpelier, Francenaonaonaojborges@uevora.ptbafcc@uevora.ptmourad@uevora.pt249Borges, JFCaldeira, BBezzeghoud, Minfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-01-03T18:45:59Zoai:dspace.uevora.pt:10174/6490Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T11:56:07.736225Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Source rupture process, directivity and and Coulomb stress change of the 12 January 2010 (Port-au-Prince Haiti, Mw7.0) earthquake
title Source rupture process, directivity and and Coulomb stress change of the 12 January 2010 (Port-au-Prince Haiti, Mw7.0) earthquake
spellingShingle Source rupture process, directivity and and Coulomb stress change of the 12 January 2010 (Port-au-Prince Haiti, Mw7.0) earthquake
Borges, JF
Haiti
Seismic Sources
title_short Source rupture process, directivity and and Coulomb stress change of the 12 January 2010 (Port-au-Prince Haiti, Mw7.0) earthquake
title_full Source rupture process, directivity and and Coulomb stress change of the 12 January 2010 (Port-au-Prince Haiti, Mw7.0) earthquake
title_fullStr Source rupture process, directivity and and Coulomb stress change of the 12 January 2010 (Port-au-Prince Haiti, Mw7.0) earthquake
title_full_unstemmed Source rupture process, directivity and and Coulomb stress change of the 12 January 2010 (Port-au-Prince Haiti, Mw7.0) earthquake
title_sort Source rupture process, directivity and and Coulomb stress change of the 12 January 2010 (Port-au-Prince Haiti, Mw7.0) earthquake
author Borges, JF
author_facet Borges, JF
Caldeira, B
Bezzeghoud, M
author_role author
author2 Caldeira, B
Bezzeghoud, M
author2_role author
author
dc.contributor.author.fl_str_mv Borges, JF
Caldeira, B
Bezzeghoud, M
dc.subject.por.fl_str_mv Haiti
Seismic Sources
topic Haiti
Seismic Sources
description The Haiti earthquake occurred on Tuesday, January 12, 2010 at 21:53:10 UTC. Its epi- center was at 18.46 degrees North, 72.53 degrees West, about 25 km WSW of Haiti’s capital, Port-au-Prince, along the tectonic boundary between Caribbean and North America plate dominated by left-lateral stri- ke slip motion and compression with 2 cm/yr of slip velocity eastward with respect to the North America plate. The earthquake was relatively shallow (about 13 km depth) with Mw 7.0 and CMT mechanism solution indica- ting left-lateral strike slip movement with a fault plane oriented toward the WNW-ESE. More than 10 aftershocks ranging from 5.0 to 5.9 in magnitude struck the area in hours following the main shock. Most of these af- tershocks have occurred to the west of the mainshock in the Mirogoane Lakes region and its distribution suggests that the length of the rupture was around 70 km. Rupture velocity and direction was constrained by using the directivity effect determined from broad-band waveforms recorded at regio- nal and teleseismic distances using DIRDOP computational code (DIRectivity DOPpler effect) [1]. The Results show that the rup- ture spread mainly from WNW to ESE with a velocity of 2.5 km/s. In order to obtain the spatiotemporal slip distribution of a fi- nite rupture model we have used teleseismic body wave and the Kikuchi and Kanamori’s method [2]. The inversion show complex source time function with a total scalar seismic moment of 2.2 x 1019Nm (Mw=6.9) a source duration of about 18 sec with a main energy relesea in the first 13 sec. Finally, we compared a map of aftershocks with the Coulomb stress changes caused by the main shock in the region [3]. [1] Kikuchi, M., and Kanamori, H., 1982, Inversion of com- plex body waves: Bull. Seismol. Soc. Am., v. 72, p. 491-506. [2] Caldeira B., Bezzeghoud M, Borges JF, 2009; DIRDOP: a directivity ap- proach to determining the seismic rupture velocity vector. J Seismology, DOI 10.1007/ s10950-009-9183-x [3] King, G. C. P., Stein, R. S. y Lin, J, 1994, Static stress changes and the triggering of earthquakes. Bull. Seismol. Soc. Am. 84,935-953. More than 10 aftershocks ranging from 5.0 to 5.9 in magnitude struck the area in hours following the main shock. Most of these aftershocks have occurred to the west of the mainshock in the Mirogoane Lakes region and its distribution suggests that the length of the rupture was around 70 km. In order to obtain the spatiotemporal slip distribution of a finite rupture model we have used teleseismic body wave and the Kikuchi and Kanamori's method [1]. Rupture velocity was constrained by using the directivity effect determined from waveforms recorded at regional and teleseismic distances [2]. The spatiotemporal slip estimated points to a unilateral rupture that propagates from WNW to ESE with a rupture velocity of 2.5 km/s. Finally, we compared a map of aftershocks with the Coulomb stress changes caused by the event in the region [3]. [1]- Kikuchi, M., and Kanamori, H., 1982, Inversion of complex body waves: Bull. Seismol. Soc. Am., v. 72, p. 491-506. [2] Caldeira B., Bezzeghoud M, Borges JF, 2009; DIRDOP: a directivity approach to determining the seismic rupture velocity vector. J Seismology, DOI 10.1007/s10950-009-9183-x [3] -King, G. C. P., Stein, R. S. y Lin, J, 1994, Static stress changes and the triggering of earthquakes. Bull. Seismol. Soc. Am. 84,935-953.
publishDate 2010
dc.date.none.fl_str_mv 2010-01-01T00:00:00Z
2012-12-05T21:36:57Z
2012-12-05
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10174/6490
http://hdl.handle.net/10174/6490
url http://hdl.handle.net/10174/6490
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Borges, JF, Caldeira, B. And Mourad Bezzegoud, 2010. Source rupture process, directivity and and Coulomb stress change of the 12 January 2010 (Port-au-Prince Haiti, Mw7.0) earthquake. General Assembly of the European Seismological Commission (ESC), September, Montpelier, France
nao
nao
nao
jborges@uevora.pt
bafcc@uevora.pt
mourad@uevora.pt
249
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv General Assembly of the European Seismological Commission (ESC), September, Montpelier, France
publisher.none.fl_str_mv General Assembly of the European Seismological Commission (ESC), September, Montpelier, France
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833592362223271936