Image processing on animal cell cultures: a refined technique

Bibliographic Details
Main Author: Xavier, Mariana
Publication Date: 2014
Other Authors: Mesquita, D. P., Amaral, A. L., Ferreira, Eugénio C., Rodrigues, L. R., Kluskens, Leon
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: https://hdl.handle.net/1822/32655
Summary: The process of microscopic animal cell counting can be a time-consuming process, resulting in a subjective analysis varying according to the researcher’s perception. Regarding the ideal moment to divide the cells, the decision is performed in an empirical manner and is affected by the complexity of cell morphology and density. Searching for a way to overcome these problems, and considering the decreasing costs of computational data processing, a window was found for new methodologies to quickly characterize a given structure. Advances in digital imaging allow the extraction of quantitative information, opposite to the qualitative and subjective evaluation of human analysis. Thus, microscopy image analysis techniques have gained, during the last years, an unquestionable role in several fields of research. The purpose of an image processing step resides in obtaining a final image holding significant information for a given application. These techniques should be automated as much as possible to avoid subjectivity. Thus, several segmentation techniques have been already proposed. For segmentation to take place, usually a threshold value(s) must be defined to allow the differentiation between the objects and background. Other methods, such as region growing, mathematical morphology and watershed are also used for this purpose. These are simple algorithms that when appropriately used can provide promising results and oftentimes with a low computation complexity. Nevertheless, the previous methods have some limitations, including non-uniform intensity variations, low-contrast images, irregular segmentation and over-segmentation. More sophisticated methods based on frameworks of active contours (e.g. snakes, level-sets) or graph-cuts can also be applied to segment cells with positive results. Nonetheless, these algorithms present high computational complexity. The main goal of this work was to develop an image processing tool using several algorithms in order to improve cell segmentation processing for different morphological cells and densities. For that purpose, different cells were used ‒ MDA-MB-231 and -435, both cancer cell lines, and MCF-10-2A, a non-tumorigenic line. Cells were observed in a Leica DM IL inverted contrasting microscope, in phase-contrast at 100x total magnification, coupled with a Leica D-LUX 3 camera, ensuring the same acquisition conditions. Despite the variability in their morphology, preliminary results demonstrated that the segmentation process was fairly successfully. As a result, the previously described flaws were minimized, leading to more efficient animal cell culturing with less variability.
id RCAP_98c94be42810dbc81b0112f12ea3982b
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/32655
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Image processing on animal cell cultures: a refined techniqueThe process of microscopic animal cell counting can be a time-consuming process, resulting in a subjective analysis varying according to the researcher’s perception. Regarding the ideal moment to divide the cells, the decision is performed in an empirical manner and is affected by the complexity of cell morphology and density. Searching for a way to overcome these problems, and considering the decreasing costs of computational data processing, a window was found for new methodologies to quickly characterize a given structure. Advances in digital imaging allow the extraction of quantitative information, opposite to the qualitative and subjective evaluation of human analysis. Thus, microscopy image analysis techniques have gained, during the last years, an unquestionable role in several fields of research. The purpose of an image processing step resides in obtaining a final image holding significant information for a given application. These techniques should be automated as much as possible to avoid subjectivity. Thus, several segmentation techniques have been already proposed. For segmentation to take place, usually a threshold value(s) must be defined to allow the differentiation between the objects and background. Other methods, such as region growing, mathematical morphology and watershed are also used for this purpose. These are simple algorithms that when appropriately used can provide promising results and oftentimes with a low computation complexity. Nevertheless, the previous methods have some limitations, including non-uniform intensity variations, low-contrast images, irregular segmentation and over-segmentation. More sophisticated methods based on frameworks of active contours (e.g. snakes, level-sets) or graph-cuts can also be applied to segment cells with positive results. Nonetheless, these algorithms present high computational complexity. The main goal of this work was to develop an image processing tool using several algorithms in order to improve cell segmentation processing for different morphological cells and densities. For that purpose, different cells were used ‒ MDA-MB-231 and -435, both cancer cell lines, and MCF-10-2A, a non-tumorigenic line. Cells were observed in a Leica DM IL inverted contrasting microscope, in phase-contrast at 100x total magnification, coupled with a Leica D-LUX 3 camera, ensuring the same acquisition conditions. Despite the variability in their morphology, preliminary results demonstrated that the segmentation process was fairly successfully. As a result, the previously described flaws were minimized, leading to more efficient animal cell culturing with less variability.Universidade do MinhoXavier, MarianaMesquita, D. P.Amaral, A. L.Ferreira, Eugénio C.Rodrigues, L. R.Kluskens, Leon2014-02-272014-02-27T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://hdl.handle.net/1822/32655engXavier, Mariana; Mesquita, D. P.; Amaral, A. L.; Ferreira, E. C.; Rodrigues, L. R.; Kluskens, Leon, Image processing on animal cell cultures: a refined technique. Bioinformatics Open Days 2014. Braga, 27-28 Feb., 34-35, 2014.http://darwin.di.uminho.pt/bod2014/info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T05:39:46Zoai:repositorium.sdum.uminho.pt:1822/32655Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T15:25:54.221598Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Image processing on animal cell cultures: a refined technique
title Image processing on animal cell cultures: a refined technique
spellingShingle Image processing on animal cell cultures: a refined technique
Xavier, Mariana
title_short Image processing on animal cell cultures: a refined technique
title_full Image processing on animal cell cultures: a refined technique
title_fullStr Image processing on animal cell cultures: a refined technique
title_full_unstemmed Image processing on animal cell cultures: a refined technique
title_sort Image processing on animal cell cultures: a refined technique
author Xavier, Mariana
author_facet Xavier, Mariana
Mesquita, D. P.
Amaral, A. L.
Ferreira, Eugénio C.
Rodrigues, L. R.
Kluskens, Leon
author_role author
author2 Mesquita, D. P.
Amaral, A. L.
Ferreira, Eugénio C.
Rodrigues, L. R.
Kluskens, Leon
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Xavier, Mariana
Mesquita, D. P.
Amaral, A. L.
Ferreira, Eugénio C.
Rodrigues, L. R.
Kluskens, Leon
description The process of microscopic animal cell counting can be a time-consuming process, resulting in a subjective analysis varying according to the researcher’s perception. Regarding the ideal moment to divide the cells, the decision is performed in an empirical manner and is affected by the complexity of cell morphology and density. Searching for a way to overcome these problems, and considering the decreasing costs of computational data processing, a window was found for new methodologies to quickly characterize a given structure. Advances in digital imaging allow the extraction of quantitative information, opposite to the qualitative and subjective evaluation of human analysis. Thus, microscopy image analysis techniques have gained, during the last years, an unquestionable role in several fields of research. The purpose of an image processing step resides in obtaining a final image holding significant information for a given application. These techniques should be automated as much as possible to avoid subjectivity. Thus, several segmentation techniques have been already proposed. For segmentation to take place, usually a threshold value(s) must be defined to allow the differentiation between the objects and background. Other methods, such as region growing, mathematical morphology and watershed are also used for this purpose. These are simple algorithms that when appropriately used can provide promising results and oftentimes with a low computation complexity. Nevertheless, the previous methods have some limitations, including non-uniform intensity variations, low-contrast images, irregular segmentation and over-segmentation. More sophisticated methods based on frameworks of active contours (e.g. snakes, level-sets) or graph-cuts can also be applied to segment cells with positive results. Nonetheless, these algorithms present high computational complexity. The main goal of this work was to develop an image processing tool using several algorithms in order to improve cell segmentation processing for different morphological cells and densities. For that purpose, different cells were used ‒ MDA-MB-231 and -435, both cancer cell lines, and MCF-10-2A, a non-tumorigenic line. Cells were observed in a Leica DM IL inverted contrasting microscope, in phase-contrast at 100x total magnification, coupled with a Leica D-LUX 3 camera, ensuring the same acquisition conditions. Despite the variability in their morphology, preliminary results demonstrated that the segmentation process was fairly successfully. As a result, the previously described flaws were minimized, leading to more efficient animal cell culturing with less variability.
publishDate 2014
dc.date.none.fl_str_mv 2014-02-27
2014-02-27T00:00:00Z
dc.type.driver.fl_str_mv conference object
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1822/32655
url https://hdl.handle.net/1822/32655
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Xavier, Mariana; Mesquita, D. P.; Amaral, A. L.; Ferreira, E. C.; Rodrigues, L. R.; Kluskens, Leon, Image processing on animal cell cultures: a refined technique. Bioinformatics Open Days 2014. Braga, 27-28 Feb., 34-35, 2014.
http://darwin.di.uminho.pt/bod2014/
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833595310105952256