Ensembling multiple radio maps with dynamic noise in fingerprint-based indoor positioning

Bibliographic Details
Main Author: Torres-Sospedra, Joaquín
Publication Date: 2021
Other Authors: Aranda, Fernando J., Alvarez, Fernando J., Quezada-Gaibor, Darwin, Silva, Ivo Miguel Menezes, Pendão, Cristiano Gonçalves, Moreira, Adriano
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: https://hdl.handle.net/1822/82113
Summary: Fingerprint-based indoor positioning is widely used in many contexts, including pedestrian and autonomous vehicles navigation. Many approaches have used traditional Machine Learning models to deal with fingerprinting, being k-NN the most common used one. However, the reference data (or radio map) is generally limited, as data collection is a very demanding task, which degrades overall accuracy. In this work, we propose a novel approach to add random noise to the radio map which will be used in combination with an ensemble model. Instead of augmenting the radio map, we create n noisy versions of the same size, i.e. our proposed Indoor Positioning model will combine n estimations obtained by independent estimators built with the n noisy radio maps. The empirical results have shown that our proposed approach improves the baseline method results in around 10% on average.
id RCAP_988c02d7f9d9c1df4629427cd79f0bd1
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/82113
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Ensembling multiple radio maps with dynamic noise in fingerprint-based indoor positioningIndoor PositioningFingerprintingRadio MapNoisy samplesEnsembleScience & TechnologyFingerprint-based indoor positioning is widely used in many contexts, including pedestrian and autonomous vehicles navigation. Many approaches have used traditional Machine Learning models to deal with fingerprinting, being k-NN the most common used one. However, the reference data (or radio map) is generally limited, as data collection is a very demanding task, which degrades overall accuracy. In this work, we propose a novel approach to add random noise to the radio map which will be used in combination with an ensemble model. Instead of augmenting the radio map, we create n noisy versions of the same size, i.e. our proposed Indoor Positioning model will combine n estimations obtained by independent estimators built with the n noisy radio maps. The empirical results have shown that our proposed approach improves the baseline method results in around 10% on average.The authors gratefully acknowledge funding from Ministerio de Ciencia, Innovacion y Universidades (INSIGNIA, PTQ2018-009981 and MICROCEBUS, RTI2018-095168-B-C54); Ministerio de Economia, Industria y Competitividad (REPNIN+, TEC2017-90808-REDT); European Union's H2020 Research and Innovation programme under the Marie SklodowskaCurie grant agreement No.813278 (A-WEAR, http://www.a-wear.eu/); FCT Fundacao para a Ciencia e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020 and the PhD fellowship PD/BD/137401/2018IEEEUniversidade do MinhoTorres-Sospedra, JoaquínAranda, Fernando J.Alvarez, Fernando J.Quezada-Gaibor, DarwinSilva, Ivo Miguel MenezesPendão, Cristiano GonçalvesMoreira, Adriano20212021-01-01T00:00:00Zconference paperinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://hdl.handle.net/1822/82113engJ. Torres-Sospedra et al., "Ensembling Multiple Radio Maps with Dynamic Noise in Fingerprint-based Indoor Positioning," 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), Helsinki, Finland, 2021, pp. 1-5, doi: 10.1109/VTC2021-Spring51267.2021.944894797817281896421550-225210.1109/VTC2021-Spring51267.2021.9448947https://ieeexplore.ieee.org/document/9448947info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T07:40:20Zoai:repositorium.sdum.uminho.pt:1822/82113Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T16:35:34.871555Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Ensembling multiple radio maps with dynamic noise in fingerprint-based indoor positioning
title Ensembling multiple radio maps with dynamic noise in fingerprint-based indoor positioning
spellingShingle Ensembling multiple radio maps with dynamic noise in fingerprint-based indoor positioning
Torres-Sospedra, Joaquín
Indoor Positioning
Fingerprinting
Radio Map
Noisy samples
Ensemble
Science & Technology
title_short Ensembling multiple radio maps with dynamic noise in fingerprint-based indoor positioning
title_full Ensembling multiple radio maps with dynamic noise in fingerprint-based indoor positioning
title_fullStr Ensembling multiple radio maps with dynamic noise in fingerprint-based indoor positioning
title_full_unstemmed Ensembling multiple radio maps with dynamic noise in fingerprint-based indoor positioning
title_sort Ensembling multiple radio maps with dynamic noise in fingerprint-based indoor positioning
author Torres-Sospedra, Joaquín
author_facet Torres-Sospedra, Joaquín
Aranda, Fernando J.
Alvarez, Fernando J.
Quezada-Gaibor, Darwin
Silva, Ivo Miguel Menezes
Pendão, Cristiano Gonçalves
Moreira, Adriano
author_role author
author2 Aranda, Fernando J.
Alvarez, Fernando J.
Quezada-Gaibor, Darwin
Silva, Ivo Miguel Menezes
Pendão, Cristiano Gonçalves
Moreira, Adriano
author2_role author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Torres-Sospedra, Joaquín
Aranda, Fernando J.
Alvarez, Fernando J.
Quezada-Gaibor, Darwin
Silva, Ivo Miguel Menezes
Pendão, Cristiano Gonçalves
Moreira, Adriano
dc.subject.por.fl_str_mv Indoor Positioning
Fingerprinting
Radio Map
Noisy samples
Ensemble
Science & Technology
topic Indoor Positioning
Fingerprinting
Radio Map
Noisy samples
Ensemble
Science & Technology
description Fingerprint-based indoor positioning is widely used in many contexts, including pedestrian and autonomous vehicles navigation. Many approaches have used traditional Machine Learning models to deal with fingerprinting, being k-NN the most common used one. However, the reference data (or radio map) is generally limited, as data collection is a very demanding task, which degrades overall accuracy. In this work, we propose a novel approach to add random noise to the radio map which will be used in combination with an ensemble model. Instead of augmenting the radio map, we create n noisy versions of the same size, i.e. our proposed Indoor Positioning model will combine n estimations obtained by independent estimators built with the n noisy radio maps. The empirical results have shown that our proposed approach improves the baseline method results in around 10% on average.
publishDate 2021
dc.date.none.fl_str_mv 2021
2021-01-01T00:00:00Z
dc.type.driver.fl_str_mv conference paper
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1822/82113
url https://hdl.handle.net/1822/82113
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv J. Torres-Sospedra et al., "Ensembling Multiple Radio Maps with Dynamic Noise in Fingerprint-based Indoor Positioning," 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), Helsinki, Finland, 2021, pp. 1-5, doi: 10.1109/VTC2021-Spring51267.2021.9448947
9781728189642
1550-2252
10.1109/VTC2021-Spring51267.2021.9448947
https://ieeexplore.ieee.org/document/9448947
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv IEEE
publisher.none.fl_str_mv IEEE
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833596041449963520