Point Cloud Coding: Adopting a Deep Learningbased Approach

Detalhes bibliográficos
Autor(a) principal: Guarda, André
Data de Publicação: 2019
Outros Autores: M. M. Rodrigues, Nuno, Pereira, Fernando
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/10400.8/12943
Resumo: Point clouds have recently become an important visual representation format, especially for virtual and augmented reality applications, thus making point cloud coding a very hot research topic. Deep learning-based coding methods have recently emerged in the field of image coding with increasing success. These coding solutions take advantage of the ability of convolutional neural networks to extract adaptive features from the images to create a latent representation that can be efficiently coded. In this context, this paper extends the deep-learning coding approach to point cloud coding using an autoencoder network design. Performance results are very promising, showing improvements over the Point Cloud Library codec often taken as benchmark, thus suggesting a significant margin of evolution for this new point cloud coding paradigm.
id RCAP_96b2dadf34d65bd8ac6dddb94d5c072b
oai_identifier_str oai:iconline.ipleiria.pt:10400.8/12943
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Point Cloud Coding: Adopting a Deep Learningbased Approachpoint cloud codingdeep learningconvolutional neural networkPoint clouds have recently become an important visual representation format, especially for virtual and augmented reality applications, thus making point cloud coding a very hot research topic. Deep learning-based coding methods have recently emerged in the field of image coding with increasing success. These coding solutions take advantage of the ability of convolutional neural networks to extract adaptive features from the images to create a latent representation that can be efficiently coded. In this context, this paper extends the deep-learning coding approach to point cloud coding using an autoencoder network design. Performance results are very promising, showing improvements over the Point Cloud Library codec often taken as benchmark, thus suggesting a significant margin of evolution for this new point cloud coding paradigm.IEEE CanadaRepositório IC-OnlineGuarda, AndréM. M. Rodrigues, NunoPereira, Fernando2025-05-20T14:35:08Z2019-112019-11-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.8/12943eng978-1-7281-4705-52330-793510.1109/pcs48520.2019.8954537info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-05-25T02:32:12Zoai:iconline.ipleiria.pt:10400.8/12943Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T07:36:34.803022Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Point Cloud Coding: Adopting a Deep Learningbased Approach
title Point Cloud Coding: Adopting a Deep Learningbased Approach
spellingShingle Point Cloud Coding: Adopting a Deep Learningbased Approach
Guarda, André
point cloud coding
deep learning
convolutional neural network
title_short Point Cloud Coding: Adopting a Deep Learningbased Approach
title_full Point Cloud Coding: Adopting a Deep Learningbased Approach
title_fullStr Point Cloud Coding: Adopting a Deep Learningbased Approach
title_full_unstemmed Point Cloud Coding: Adopting a Deep Learningbased Approach
title_sort Point Cloud Coding: Adopting a Deep Learningbased Approach
author Guarda, André
author_facet Guarda, André
M. M. Rodrigues, Nuno
Pereira, Fernando
author_role author
author2 M. M. Rodrigues, Nuno
Pereira, Fernando
author2_role author
author
dc.contributor.none.fl_str_mv Repositório IC-Online
dc.contributor.author.fl_str_mv Guarda, André
M. M. Rodrigues, Nuno
Pereira, Fernando
dc.subject.por.fl_str_mv point cloud coding
deep learning
convolutional neural network
topic point cloud coding
deep learning
convolutional neural network
description Point clouds have recently become an important visual representation format, especially for virtual and augmented reality applications, thus making point cloud coding a very hot research topic. Deep learning-based coding methods have recently emerged in the field of image coding with increasing success. These coding solutions take advantage of the ability of convolutional neural networks to extract adaptive features from the images to create a latent representation that can be efficiently coded. In this context, this paper extends the deep-learning coding approach to point cloud coding using an autoencoder network design. Performance results are very promising, showing improvements over the Point Cloud Library codec often taken as benchmark, thus suggesting a significant margin of evolution for this new point cloud coding paradigm.
publishDate 2019
dc.date.none.fl_str_mv 2019-11
2019-11-01T00:00:00Z
2025-05-20T14:35:08Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.8/12943
url http://hdl.handle.net/10400.8/12943
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 978-1-7281-4705-5
2330-7935
10.1109/pcs48520.2019.8954537
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv IEEE Canada
publisher.none.fl_str_mv IEEE Canada
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833603018760650752