Point Cloud Coding: Adopting a Deep Learningbased Approach
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2019 |
| Outros Autores: | , |
| Tipo de documento: | Artigo |
| Idioma: | eng |
| Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Texto Completo: | http://hdl.handle.net/10400.8/12943 |
Resumo: | Point clouds have recently become an important visual representation format, especially for virtual and augmented reality applications, thus making point cloud coding a very hot research topic. Deep learning-based coding methods have recently emerged in the field of image coding with increasing success. These coding solutions take advantage of the ability of convolutional neural networks to extract adaptive features from the images to create a latent representation that can be efficiently coded. In this context, this paper extends the deep-learning coding approach to point cloud coding using an autoencoder network design. Performance results are very promising, showing improvements over the Point Cloud Library codec often taken as benchmark, thus suggesting a significant margin of evolution for this new point cloud coding paradigm. |
| id |
RCAP_96b2dadf34d65bd8ac6dddb94d5c072b |
|---|---|
| oai_identifier_str |
oai:iconline.ipleiria.pt:10400.8/12943 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Point Cloud Coding: Adopting a Deep Learningbased Approachpoint cloud codingdeep learningconvolutional neural networkPoint clouds have recently become an important visual representation format, especially for virtual and augmented reality applications, thus making point cloud coding a very hot research topic. Deep learning-based coding methods have recently emerged in the field of image coding with increasing success. These coding solutions take advantage of the ability of convolutional neural networks to extract adaptive features from the images to create a latent representation that can be efficiently coded. In this context, this paper extends the deep-learning coding approach to point cloud coding using an autoencoder network design. Performance results are very promising, showing improvements over the Point Cloud Library codec often taken as benchmark, thus suggesting a significant margin of evolution for this new point cloud coding paradigm.IEEE CanadaRepositório IC-OnlineGuarda, AndréM. M. Rodrigues, NunoPereira, Fernando2025-05-20T14:35:08Z2019-112019-11-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.8/12943eng978-1-7281-4705-52330-793510.1109/pcs48520.2019.8954537info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-05-25T02:32:12Zoai:iconline.ipleiria.pt:10400.8/12943Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T07:36:34.803022Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Point Cloud Coding: Adopting a Deep Learningbased Approach |
| title |
Point Cloud Coding: Adopting a Deep Learningbased Approach |
| spellingShingle |
Point Cloud Coding: Adopting a Deep Learningbased Approach Guarda, André point cloud coding deep learning convolutional neural network |
| title_short |
Point Cloud Coding: Adopting a Deep Learningbased Approach |
| title_full |
Point Cloud Coding: Adopting a Deep Learningbased Approach |
| title_fullStr |
Point Cloud Coding: Adopting a Deep Learningbased Approach |
| title_full_unstemmed |
Point Cloud Coding: Adopting a Deep Learningbased Approach |
| title_sort |
Point Cloud Coding: Adopting a Deep Learningbased Approach |
| author |
Guarda, André |
| author_facet |
Guarda, André M. M. Rodrigues, Nuno Pereira, Fernando |
| author_role |
author |
| author2 |
M. M. Rodrigues, Nuno Pereira, Fernando |
| author2_role |
author author |
| dc.contributor.none.fl_str_mv |
Repositório IC-Online |
| dc.contributor.author.fl_str_mv |
Guarda, André M. M. Rodrigues, Nuno Pereira, Fernando |
| dc.subject.por.fl_str_mv |
point cloud coding deep learning convolutional neural network |
| topic |
point cloud coding deep learning convolutional neural network |
| description |
Point clouds have recently become an important visual representation format, especially for virtual and augmented reality applications, thus making point cloud coding a very hot research topic. Deep learning-based coding methods have recently emerged in the field of image coding with increasing success. These coding solutions take advantage of the ability of convolutional neural networks to extract adaptive features from the images to create a latent representation that can be efficiently coded. In this context, this paper extends the deep-learning coding approach to point cloud coding using an autoencoder network design. Performance results are very promising, showing improvements over the Point Cloud Library codec often taken as benchmark, thus suggesting a significant margin of evolution for this new point cloud coding paradigm. |
| publishDate |
2019 |
| dc.date.none.fl_str_mv |
2019-11 2019-11-01T00:00:00Z 2025-05-20T14:35:08Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.8/12943 |
| url |
http://hdl.handle.net/10400.8/12943 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
978-1-7281-4705-5 2330-7935 10.1109/pcs48520.2019.8954537 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
IEEE Canada |
| publisher.none.fl_str_mv |
IEEE Canada |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833603018760650752 |