Detection of Waste Containers Using Computer Vision
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Texto Completo: | http://hdl.handle.net/10400.6/7290 |
Resumo: | This work is a part of an ongoing study to substitute the identification of waste containers via radio-frequency identification. The purpose of this paper is to propose a method of identification based on computer vision that performs detection using images, video, or real-time video capture to identify different types of waste containers. Compared to the current method of identification, this approach is more agile and does not require as many resources. Two approaches are employed, one using feature detectors/descriptors and other using convolutional neural networks. The former used a vector of locally aggregated descriptors (VLAD); however, it failed to accomplish what was desired. The latter used you only look once (YOLO), a convolutional neural network, and reached an accuracy in the range of 90%, meaning that it correctly identified and classified 90% of the pictures used on the test set. |
id |
RCAP_95766e8d1b1e1c41a26d4699c57e794c |
---|---|
oai_identifier_str |
oai:ubibliorum.ubi.pt:10400.6/7290 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Detection of Waste Containers Using Computer VisionWaste containerObject detectionVLADConvolutional neural networksYOLOThis work is a part of an ongoing study to substitute the identification of waste containers via radio-frequency identification. The purpose of this paper is to propose a method of identification based on computer vision that performs detection using images, video, or real-time video capture to identify different types of waste containers. Compared to the current method of identification, this approach is more agile and does not require as many resources. Two approaches are employed, one using feature detectors/descriptors and other using convolutional neural networks. The former used a vector of locally aggregated descriptors (VLAD); however, it failed to accomplish what was desired. The latter used you only look once (YOLO), a convolutional neural network, and reached an accuracy in the range of 90%, meaning that it correctly identified and classified 90% of the pictures used on the test set.MDPIuBibliorumValente, MiguelSilva, HélioCaldeira, JoãoSoares, Vasco N. G. J.Gaspar, Pedro Dinis2019-10-18T14:12:16Z20192019-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.6/7290eng2571-557710.3390/asi2010011info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-11T15:12:40Zoai:ubibliorum.ubi.pt:10400.6/7290Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T01:24:14.392827Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Detection of Waste Containers Using Computer Vision |
title |
Detection of Waste Containers Using Computer Vision |
spellingShingle |
Detection of Waste Containers Using Computer Vision Valente, Miguel Waste container Object detection VLAD Convolutional neural networks YOLO |
title_short |
Detection of Waste Containers Using Computer Vision |
title_full |
Detection of Waste Containers Using Computer Vision |
title_fullStr |
Detection of Waste Containers Using Computer Vision |
title_full_unstemmed |
Detection of Waste Containers Using Computer Vision |
title_sort |
Detection of Waste Containers Using Computer Vision |
author |
Valente, Miguel |
author_facet |
Valente, Miguel Silva, Hélio Caldeira, João Soares, Vasco N. G. J. Gaspar, Pedro Dinis |
author_role |
author |
author2 |
Silva, Hélio Caldeira, João Soares, Vasco N. G. J. Gaspar, Pedro Dinis |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
uBibliorum |
dc.contributor.author.fl_str_mv |
Valente, Miguel Silva, Hélio Caldeira, João Soares, Vasco N. G. J. Gaspar, Pedro Dinis |
dc.subject.por.fl_str_mv |
Waste container Object detection VLAD Convolutional neural networks YOLO |
topic |
Waste container Object detection VLAD Convolutional neural networks YOLO |
description |
This work is a part of an ongoing study to substitute the identification of waste containers via radio-frequency identification. The purpose of this paper is to propose a method of identification based on computer vision that performs detection using images, video, or real-time video capture to identify different types of waste containers. Compared to the current method of identification, this approach is more agile and does not require as many resources. Two approaches are employed, one using feature detectors/descriptors and other using convolutional neural networks. The former used a vector of locally aggregated descriptors (VLAD); however, it failed to accomplish what was desired. The latter used you only look once (YOLO), a convolutional neural network, and reached an accuracy in the range of 90%, meaning that it correctly identified and classified 90% of the pictures used on the test set. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-10-18T14:12:16Z 2019 2019-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.6/7290 |
url |
http://hdl.handle.net/10400.6/7290 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2571-5577 10.3390/asi2010011 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833600965130846208 |