On C∗-Algebras from Interval Maps

Bibliographic Details
Main Author: Correia Ramos, C.
Publication Date: 2013
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10174/10099
https://doi.org/10.1007/s11785-011-0132-7
Summary: Given a unimodal interval map f , we construct partial isometries acting on Hilbert spaces associated to the orbit of each point. Then we prove that such partial isometries give rise to representations of a C∗-algebra associated to the subshift encoding the kneading sequence of the critical point. This construction has the advantage of incorporating maps with a non necessarily Markov partition (e.g. Fibonacci unimodal map). If we are indeed in the presence of a finite Markov partition, then we prove that these new representations coincide with the (previously considered by the authors) representations arising from the Cuntz–Krieger algebra of the underlying (finite) transition matrix.
id RCAP_93a6283dca6ba0932a7030ba2f2efd7e
oai_identifier_str oai:dspace.uevora.pt:10174/10099
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling On C∗-Algebras from Interval MapsInterval mapsSymbolic dynamicsCuntz–Krieger algebrasRepresentations of algebrasGiven a unimodal interval map f , we construct partial isometries acting on Hilbert spaces associated to the orbit of each point. Then we prove that such partial isometries give rise to representations of a C∗-algebra associated to the subshift encoding the kneading sequence of the critical point. This construction has the advantage of incorporating maps with a non necessarily Markov partition (e.g. Fibonacci unimodal map). If we are indeed in the presence of a finite Markov partition, then we prove that these new representations coincide with the (previously considered by the authors) representations arising from the Cuntz–Krieger algebra of the underlying (finite) transition matrix.Springer Verlag2014-01-27T16:52:28Z2014-01-272013-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/10099http://hdl.handle.net/10174/10099https://doi.org/10.1007/s11785-011-0132-7engRamos, C. Correia; Martins, Nuno; Pinto, Paulo R. On C∗-algebras from interval maps. Complex Anal. Oper. Theory 7 (2013), no. 1, 221–235.DMAT, CIMAccr@uevora.pt721Correia Ramos, C.info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-01-03T18:52:37Zoai:dspace.uevora.pt:10174/10099Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T12:00:44.879305Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv On C∗-Algebras from Interval Maps
title On C∗-Algebras from Interval Maps
spellingShingle On C∗-Algebras from Interval Maps
Correia Ramos, C.
Interval maps
Symbolic dynamics
Cuntz–Krieger algebras
Representations of algebras
title_short On C∗-Algebras from Interval Maps
title_full On C∗-Algebras from Interval Maps
title_fullStr On C∗-Algebras from Interval Maps
title_full_unstemmed On C∗-Algebras from Interval Maps
title_sort On C∗-Algebras from Interval Maps
author Correia Ramos, C.
author_facet Correia Ramos, C.
author_role author
dc.contributor.author.fl_str_mv Correia Ramos, C.
dc.subject.por.fl_str_mv Interval maps
Symbolic dynamics
Cuntz–Krieger algebras
Representations of algebras
topic Interval maps
Symbolic dynamics
Cuntz–Krieger algebras
Representations of algebras
description Given a unimodal interval map f , we construct partial isometries acting on Hilbert spaces associated to the orbit of each point. Then we prove that such partial isometries give rise to representations of a C∗-algebra associated to the subshift encoding the kneading sequence of the critical point. This construction has the advantage of incorporating maps with a non necessarily Markov partition (e.g. Fibonacci unimodal map). If we are indeed in the presence of a finite Markov partition, then we prove that these new representations coincide with the (previously considered by the authors) representations arising from the Cuntz–Krieger algebra of the underlying (finite) transition matrix.
publishDate 2013
dc.date.none.fl_str_mv 2013-01-01T00:00:00Z
2014-01-27T16:52:28Z
2014-01-27
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10174/10099
http://hdl.handle.net/10174/10099
https://doi.org/10.1007/s11785-011-0132-7
url http://hdl.handle.net/10174/10099
https://doi.org/10.1007/s11785-011-0132-7
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Ramos, C. Correia; Martins, Nuno; Pinto, Paulo R. On C∗-algebras from interval maps. Complex Anal. Oper. Theory 7 (2013), no. 1, 221–235.
DMAT, CIMA
ccr@uevora.pt
721
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Springer Verlag
publisher.none.fl_str_mv Springer Verlag
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833592433153146880