Characterizing time computational complexity classes with polynomial differential equations

Detalhes bibliográficos
Autor(a) principal: Gozzi, Riccardo
Data de Publicação: 2022
Outros Autores: Graça, Daniel
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/10400.1/18413
Resumo: In this paper we show that several classes of languages from computational complexity theory, such as EXPTIME, can be characterized in a continuous manner by using only polynomial differential equations. This characterization applies not only to languages, but also to classes of functions, such as the classes defining the Grzegorczyk hierarchy, which implies an analog characterization of the class of elementary computable functions and the class of primitive recursive functions.
id RCAP_91b4a76221722d19a9ddf93bd14fbc30
oai_identifier_str oai:sapientia.ualg.pt:10400.1/18413
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Characterizing time computational complexity classes with polynomial differential equationsIn this paper we show that several classes of languages from computational complexity theory, such as EXPTIME, can be characterized in a continuous manner by using only polynomial differential equations. This characterization applies not only to languages, but also to classes of functions, such as the classes defining the Grzegorczyk hierarchy, which implies an analog characterization of the class of elementary computable functions and the class of primitive recursive functions.IOS PressSapientiaGozzi, RiccardoGraça, Daniel2022-10-21T13:57:03Z20222022-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.1/18413eng2211-356810.3233/COM-210384info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-18T17:46:50Zoai:sapientia.ualg.pt:10400.1/18413Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T20:35:37.778562Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Characterizing time computational complexity classes with polynomial differential equations
title Characterizing time computational complexity classes with polynomial differential equations
spellingShingle Characterizing time computational complexity classes with polynomial differential equations
Gozzi, Riccardo
title_short Characterizing time computational complexity classes with polynomial differential equations
title_full Characterizing time computational complexity classes with polynomial differential equations
title_fullStr Characterizing time computational complexity classes with polynomial differential equations
title_full_unstemmed Characterizing time computational complexity classes with polynomial differential equations
title_sort Characterizing time computational complexity classes with polynomial differential equations
author Gozzi, Riccardo
author_facet Gozzi, Riccardo
Graça, Daniel
author_role author
author2 Graça, Daniel
author2_role author
dc.contributor.none.fl_str_mv Sapientia
dc.contributor.author.fl_str_mv Gozzi, Riccardo
Graça, Daniel
description In this paper we show that several classes of languages from computational complexity theory, such as EXPTIME, can be characterized in a continuous manner by using only polynomial differential equations. This characterization applies not only to languages, but also to classes of functions, such as the classes defining the Grzegorczyk hierarchy, which implies an analog characterization of the class of elementary computable functions and the class of primitive recursive functions.
publishDate 2022
dc.date.none.fl_str_mv 2022-10-21T13:57:03Z
2022
2022-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.1/18413
url http://hdl.handle.net/10400.1/18413
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2211-3568
10.3233/COM-210384
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv IOS Press
publisher.none.fl_str_mv IOS Press
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833598733916307456