Modelling of spray-wall impingement

Bibliographic Details
Main Author: Rodrigues, Christian Michel Gomes
Publication Date: 2016
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10400.6/4183
Summary: When a drop collides with an interposed surface, three phases are usually involved: liquid (the drop), solid (the substrate) and gas (the surrounding environment). Such an event involves a number of parameters associated with the physical characteristics of the incident particles, the properties of the target surface, and the natural features of the air flow. Each occurrence leads to a singular outcome, since each particle experiences a different reality throughout the injection cycle. Therefore, the development of appropriate modelling strategies of this complex multi-phase flow requires a thorough understanding of the mechanisms underlying the spray impingement process. Several computational models have been reported in the open literature, although not always successfully. From these, only a few have attempted to replicate the more intricate scenarios that include the formation and development of a liquid film over the surface due to the deposition of previously injected particles, the presence of a high velocity cross-flowing gas, and the thermal effects promoted by the existence of hot walls. Even though these elements are some of the more influential parameters affecting the final outcome of spray-wall impacts, most of the simulations still neglect some of them in their formulation. Therefore, in order to capture the majority of the physical phenomena observed in experimental studies, CFD codes must be equipped with superior mathematical formulations. During the present doctoral research, three independent computational extensions have been devised and integrated into the model used by our research group to simulate spray-wall interactions. The upgrades — that have been proposed over the course of the study — have been denominated as the liquid film, evaporation and breakup sub-models. They are intended to complement the basic mathematical formulation adopted in the original simulation procedure. This approach has contributed to enhance the prediction capabilities of the model, since it is now capable of capturing some phenomena that were not considered previously. On the other hand, it has also extended the range of applicability of the CFD code to a new set of impact conditions (i.e., in hot environments and with a high velocity crossflow). Furthermore, the present work provides a detailed analysis of the results obtained, with major emphasis given to the disintegration mechanisms and secondary droplet characteristics. Both quantitative and qualitative comparisons between computational and experimental results are presented. When pertinent, the impact of a particular sub-model onto the outcome predicted is also evaluated by comparing the versions of the model with and without the corresponding computational extension. Moreover, a systematic approach is adopted at each section to infer the influence of different parameters on the final outcome. This methodology has been decisive to better understand the factors affecting the phenomena occurring during impact.
id RCAP_8e2961b1ec4d2d02d81eb4e95bb5cba2
oai_identifier_str oai:ubibliorum.ubi.pt:10400.6/4183
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Modelling of spray-wall impingementImpacto de gotasInterações entre spray e paredeCaracterísticas das gotas secundáriasTransferência de calorPelícula líquidaBreakupDeformação da gotaSplashWhen a drop collides with an interposed surface, three phases are usually involved: liquid (the drop), solid (the substrate) and gas (the surrounding environment). Such an event involves a number of parameters associated with the physical characteristics of the incident particles, the properties of the target surface, and the natural features of the air flow. Each occurrence leads to a singular outcome, since each particle experiences a different reality throughout the injection cycle. Therefore, the development of appropriate modelling strategies of this complex multi-phase flow requires a thorough understanding of the mechanisms underlying the spray impingement process. Several computational models have been reported in the open literature, although not always successfully. From these, only a few have attempted to replicate the more intricate scenarios that include the formation and development of a liquid film over the surface due to the deposition of previously injected particles, the presence of a high velocity cross-flowing gas, and the thermal effects promoted by the existence of hot walls. Even though these elements are some of the more influential parameters affecting the final outcome of spray-wall impacts, most of the simulations still neglect some of them in their formulation. Therefore, in order to capture the majority of the physical phenomena observed in experimental studies, CFD codes must be equipped with superior mathematical formulations. During the present doctoral research, three independent computational extensions have been devised and integrated into the model used by our research group to simulate spray-wall interactions. The upgrades — that have been proposed over the course of the study — have been denominated as the liquid film, evaporation and breakup sub-models. They are intended to complement the basic mathematical formulation adopted in the original simulation procedure. This approach has contributed to enhance the prediction capabilities of the model, since it is now capable of capturing some phenomena that were not considered previously. On the other hand, it has also extended the range of applicability of the CFD code to a new set of impact conditions (i.e., in hot environments and with a high velocity crossflow). Furthermore, the present work provides a detailed analysis of the results obtained, with major emphasis given to the disintegration mechanisms and secondary droplet characteristics. Both quantitative and qualitative comparisons between computational and experimental results are presented. When pertinent, the impact of a particular sub-model onto the outcome predicted is also evaluated by comparing the versions of the model with and without the corresponding computational extension. Moreover, a systematic approach is adopted at each section to infer the influence of different parameters on the final outcome. This methodology has been decisive to better understand the factors affecting the phenomena occurring during impact.Silva, André Resende Rodrigues daBarata, Jorge Manuel MartinsuBibliorumRodrigues, Christian Michel Gomes2016-06-17T14:32:26Z20162016-01-01T00:00:00Zdoctoral thesisinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10400.6/4183urn:tid:101410778enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-11T15:50:21Zoai:ubibliorum.ubi.pt:10400.6/4183Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T01:29:35.986521Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Modelling of spray-wall impingement
title Modelling of spray-wall impingement
spellingShingle Modelling of spray-wall impingement
Rodrigues, Christian Michel Gomes
Impacto de gotas
Interações entre spray e parede
Características das gotas secundárias
Transferência de calor
Película líquida
Breakup
Deformação da gota
Splash
title_short Modelling of spray-wall impingement
title_full Modelling of spray-wall impingement
title_fullStr Modelling of spray-wall impingement
title_full_unstemmed Modelling of spray-wall impingement
title_sort Modelling of spray-wall impingement
author Rodrigues, Christian Michel Gomes
author_facet Rodrigues, Christian Michel Gomes
author_role author
dc.contributor.none.fl_str_mv Silva, André Resende Rodrigues da
Barata, Jorge Manuel Martins
uBibliorum
dc.contributor.author.fl_str_mv Rodrigues, Christian Michel Gomes
dc.subject.por.fl_str_mv Impacto de gotas
Interações entre spray e parede
Características das gotas secundárias
Transferência de calor
Película líquida
Breakup
Deformação da gota
Splash
topic Impacto de gotas
Interações entre spray e parede
Características das gotas secundárias
Transferência de calor
Película líquida
Breakup
Deformação da gota
Splash
description When a drop collides with an interposed surface, three phases are usually involved: liquid (the drop), solid (the substrate) and gas (the surrounding environment). Such an event involves a number of parameters associated with the physical characteristics of the incident particles, the properties of the target surface, and the natural features of the air flow. Each occurrence leads to a singular outcome, since each particle experiences a different reality throughout the injection cycle. Therefore, the development of appropriate modelling strategies of this complex multi-phase flow requires a thorough understanding of the mechanisms underlying the spray impingement process. Several computational models have been reported in the open literature, although not always successfully. From these, only a few have attempted to replicate the more intricate scenarios that include the formation and development of a liquid film over the surface due to the deposition of previously injected particles, the presence of a high velocity cross-flowing gas, and the thermal effects promoted by the existence of hot walls. Even though these elements are some of the more influential parameters affecting the final outcome of spray-wall impacts, most of the simulations still neglect some of them in their formulation. Therefore, in order to capture the majority of the physical phenomena observed in experimental studies, CFD codes must be equipped with superior mathematical formulations. During the present doctoral research, three independent computational extensions have been devised and integrated into the model used by our research group to simulate spray-wall interactions. The upgrades — that have been proposed over the course of the study — have been denominated as the liquid film, evaporation and breakup sub-models. They are intended to complement the basic mathematical formulation adopted in the original simulation procedure. This approach has contributed to enhance the prediction capabilities of the model, since it is now capable of capturing some phenomena that were not considered previously. On the other hand, it has also extended the range of applicability of the CFD code to a new set of impact conditions (i.e., in hot environments and with a high velocity crossflow). Furthermore, the present work provides a detailed analysis of the results obtained, with major emphasis given to the disintegration mechanisms and secondary droplet characteristics. Both quantitative and qualitative comparisons between computational and experimental results are presented. When pertinent, the impact of a particular sub-model onto the outcome predicted is also evaluated by comparing the versions of the model with and without the corresponding computational extension. Moreover, a systematic approach is adopted at each section to infer the influence of different parameters on the final outcome. This methodology has been decisive to better understand the factors affecting the phenomena occurring during impact.
publishDate 2016
dc.date.none.fl_str_mv 2016-06-17T14:32:26Z
2016
2016-01-01T00:00:00Z
dc.type.driver.fl_str_mv doctoral thesis
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.6/4183
urn:tid:101410778
url http://hdl.handle.net/10400.6/4183
identifier_str_mv urn:tid:101410778
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833601006096613376