Plataforma integrada de dados de acidentes de viação para suporte a processos de aprendizagem automática

Bibliographic Details
Main Author: Santos, Daniel Filipe Pé-Leve dos
Publication Date: 2022
Format: Master thesis
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10174/31064
Summary: Integrated road accident data platform to support machine learning techniques Traffic accidents are one of the most important concerns of the world, since they result in numerous casualties, injuries, and fatalities each year, as well as significant economic losses. There are many factors that are responsible for causing road accidents. If these factors can be better understood and predicted, it might be possible to take measures to mitigate the damages and its severity. The purpose of this dissertation is to identify these factors using accident data from 2016 to 2019 from the district of Setúbal, Portugal. This work aims at developing models that can select a set of influential factors that may be used to classify the severity of an accident, supporting an analysis on the accident data. In addition, this study also proposes a predictive model for future road accidents based on past data. Various machine learning approaches are used to create these models. Supervised machine learning methods such as decision trees (DT), random forests (RF), logistic regression (LR) and naive bayes (NB) are used, as well as unsupervised machine learning techniques including DBSCAN and hierarchical clustering. Results show that a rule-based model using C5.0 algorithm is capable of accurately detecting the most relevant factors describing a road accident severity. Furthermore, the results of the predictive model suggests the RF model could be a useful tool for forecasting accident hotspots; Sumário: Os acidentes de trânsito são uma grande preocupação a nível mundial, uma vez que resultam em grandes números de vítimas, feridos e mortes por ano, como também perdas económicas significativas. Existem vários fatores responsáveis por causar acidentes rodoviários. Se pudermos compreender e prever melhor estes fatores, talvez seja possível tomar medidas para mitigar os danos e a sua gravidade. O objetivo desta dissertação é identificar estes fatores utilizando dados de acidentes de 2016 a 2019 do distrito de Setúbal, Portugal. Este trabalho tem como objetivo desenvolver modelos capazes de selecionar um conjunto de fatores influentes e que possam vir a ser utilizados para classificar a gravidade de um acidente, suportando uma análise aos dados de acidentes. Além disso, este estudo também propõe um modelo de previsão para futuros acidentes rodoviários com base em dados do passado. Várias abordagens de aprendizagem automática são usadas para criar esses modelos. Métodos de aprendizagem supervisionada, como árvores de decisão (DT), random forest (RF), regressão logística (LR) e naive bayes (NB), são usados, bem como técnicas de aprendizagem automática não supervisionada, incluindo DBSCAN e clustering hierárquico. Os resultados mostram que um modelo baseado em regras usando o algoritmo C5.0 é capaz de detetar com precisão os fatores mais relevantes que descrevem a gravidade de um acidente de viação. Além disso, os resultados do modelo preditivo sugerem que o modelo RF pode ser uma ferramenta útil para a previsão de acidentes.
id RCAP_8e0fc073ce4378debc4fb46d56e78d60
oai_identifier_str oai:dspace.uevora.pt:10174/31064
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Plataforma integrada de dados de acidentes de viação para suporte a processos de aprendizagem automáticaMachine LearningData AnalysisRoad Accident DataClusteringDecision TreesRandom ForestAprendizagem automáticaAnálise de dadosRoad Accident DataClusteringDecision TreesRandom ForestIntegrated road accident data platform to support machine learning techniques Traffic accidents are one of the most important concerns of the world, since they result in numerous casualties, injuries, and fatalities each year, as well as significant economic losses. There are many factors that are responsible for causing road accidents. If these factors can be better understood and predicted, it might be possible to take measures to mitigate the damages and its severity. The purpose of this dissertation is to identify these factors using accident data from 2016 to 2019 from the district of Setúbal, Portugal. This work aims at developing models that can select a set of influential factors that may be used to classify the severity of an accident, supporting an analysis on the accident data. In addition, this study also proposes a predictive model for future road accidents based on past data. Various machine learning approaches are used to create these models. Supervised machine learning methods such as decision trees (DT), random forests (RF), logistic regression (LR) and naive bayes (NB) are used, as well as unsupervised machine learning techniques including DBSCAN and hierarchical clustering. Results show that a rule-based model using C5.0 algorithm is capable of accurately detecting the most relevant factors describing a road accident severity. Furthermore, the results of the predictive model suggests the RF model could be a useful tool for forecasting accident hotspots; Sumário: Os acidentes de trânsito são uma grande preocupação a nível mundial, uma vez que resultam em grandes números de vítimas, feridos e mortes por ano, como também perdas económicas significativas. Existem vários fatores responsáveis por causar acidentes rodoviários. Se pudermos compreender e prever melhor estes fatores, talvez seja possível tomar medidas para mitigar os danos e a sua gravidade. O objetivo desta dissertação é identificar estes fatores utilizando dados de acidentes de 2016 a 2019 do distrito de Setúbal, Portugal. Este trabalho tem como objetivo desenvolver modelos capazes de selecionar um conjunto de fatores influentes e que possam vir a ser utilizados para classificar a gravidade de um acidente, suportando uma análise aos dados de acidentes. Além disso, este estudo também propõe um modelo de previsão para futuros acidentes rodoviários com base em dados do passado. Várias abordagens de aprendizagem automática são usadas para criar esses modelos. Métodos de aprendizagem supervisionada, como árvores de decisão (DT), random forest (RF), regressão logística (LR) e naive bayes (NB), são usados, bem como técnicas de aprendizagem automática não supervisionada, incluindo DBSCAN e clustering hierárquico. Os resultados mostram que um modelo baseado em regras usando o algoritmo C5.0 é capaz de detetar com precisão os fatores mais relevantes que descrevem a gravidade de um acidente de viação. Além disso, os resultados do modelo preditivo sugerem que o modelo RF pode ser uma ferramenta útil para a previsão de acidentes.Universidade de Évora2022-02-14T11:51:33Z2022-02-142022-01-26T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttp://hdl.handle.net/10174/31064http://hdl.handle.net/10174/31064TID:202931757engDepartamento de Informáticadanielfpsantos@hotmail.com498Santos, Daniel Filipe Pé-Leve dosinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-01-03T19:30:23Zoai:dspace.uevora.pt:10174/31064Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T12:25:58.388857Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Plataforma integrada de dados de acidentes de viação para suporte a processos de aprendizagem automática
title Plataforma integrada de dados de acidentes de viação para suporte a processos de aprendizagem automática
spellingShingle Plataforma integrada de dados de acidentes de viação para suporte a processos de aprendizagem automática
Santos, Daniel Filipe Pé-Leve dos
Machine Learning
Data Analysis
Road Accident Data
Clustering
Decision Trees
Random Forest
Aprendizagem automática
Análise de dados
Road Accident Data
Clustering
Decision Trees
Random Forest
title_short Plataforma integrada de dados de acidentes de viação para suporte a processos de aprendizagem automática
title_full Plataforma integrada de dados de acidentes de viação para suporte a processos de aprendizagem automática
title_fullStr Plataforma integrada de dados de acidentes de viação para suporte a processos de aprendizagem automática
title_full_unstemmed Plataforma integrada de dados de acidentes de viação para suporte a processos de aprendizagem automática
title_sort Plataforma integrada de dados de acidentes de viação para suporte a processos de aprendizagem automática
author Santos, Daniel Filipe Pé-Leve dos
author_facet Santos, Daniel Filipe Pé-Leve dos
author_role author
dc.contributor.author.fl_str_mv Santos, Daniel Filipe Pé-Leve dos
dc.subject.por.fl_str_mv Machine Learning
Data Analysis
Road Accident Data
Clustering
Decision Trees
Random Forest
Aprendizagem automática
Análise de dados
Road Accident Data
Clustering
Decision Trees
Random Forest
topic Machine Learning
Data Analysis
Road Accident Data
Clustering
Decision Trees
Random Forest
Aprendizagem automática
Análise de dados
Road Accident Data
Clustering
Decision Trees
Random Forest
description Integrated road accident data platform to support machine learning techniques Traffic accidents are one of the most important concerns of the world, since they result in numerous casualties, injuries, and fatalities each year, as well as significant economic losses. There are many factors that are responsible for causing road accidents. If these factors can be better understood and predicted, it might be possible to take measures to mitigate the damages and its severity. The purpose of this dissertation is to identify these factors using accident data from 2016 to 2019 from the district of Setúbal, Portugal. This work aims at developing models that can select a set of influential factors that may be used to classify the severity of an accident, supporting an analysis on the accident data. In addition, this study also proposes a predictive model for future road accidents based on past data. Various machine learning approaches are used to create these models. Supervised machine learning methods such as decision trees (DT), random forests (RF), logistic regression (LR) and naive bayes (NB) are used, as well as unsupervised machine learning techniques including DBSCAN and hierarchical clustering. Results show that a rule-based model using C5.0 algorithm is capable of accurately detecting the most relevant factors describing a road accident severity. Furthermore, the results of the predictive model suggests the RF model could be a useful tool for forecasting accident hotspots; Sumário: Os acidentes de trânsito são uma grande preocupação a nível mundial, uma vez que resultam em grandes números de vítimas, feridos e mortes por ano, como também perdas económicas significativas. Existem vários fatores responsáveis por causar acidentes rodoviários. Se pudermos compreender e prever melhor estes fatores, talvez seja possível tomar medidas para mitigar os danos e a sua gravidade. O objetivo desta dissertação é identificar estes fatores utilizando dados de acidentes de 2016 a 2019 do distrito de Setúbal, Portugal. Este trabalho tem como objetivo desenvolver modelos capazes de selecionar um conjunto de fatores influentes e que possam vir a ser utilizados para classificar a gravidade de um acidente, suportando uma análise aos dados de acidentes. Além disso, este estudo também propõe um modelo de previsão para futuros acidentes rodoviários com base em dados do passado. Várias abordagens de aprendizagem automática são usadas para criar esses modelos. Métodos de aprendizagem supervisionada, como árvores de decisão (DT), random forest (RF), regressão logística (LR) e naive bayes (NB), são usados, bem como técnicas de aprendizagem automática não supervisionada, incluindo DBSCAN e clustering hierárquico. Os resultados mostram que um modelo baseado em regras usando o algoritmo C5.0 é capaz de detetar com precisão os fatores mais relevantes que descrevem a gravidade de um acidente de viação. Além disso, os resultados do modelo preditivo sugerem que o modelo RF pode ser uma ferramenta útil para a previsão de acidentes.
publishDate 2022
dc.date.none.fl_str_mv 2022-02-14T11:51:33Z
2022-02-14
2022-01-26T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10174/31064
http://hdl.handle.net/10174/31064
TID:202931757
url http://hdl.handle.net/10174/31064
identifier_str_mv TID:202931757
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Departamento de Informática
danielfpsantos@hotmail.com
498
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade de Évora
publisher.none.fl_str_mv Universidade de Évora
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833592812325568512