The Kuhn-Tucker's theorem for inequalities in infinite dimension

Bibliographic Details
Main Author: Ferreira, M. A. M.
Publication Date: 2012
Other Authors: Filipe, J. A., Andrade, M.
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: https://ciencia.iscte-iul.pt/id/ci-pub-770
http://hdl.handle.net/10071/13590
Summary: It is intended, in this work, to present the Kuhn-Tucker theorem with the consideration of infinite inequalities. So the mathematical fundaments of this result, not so important in Mathematical Programming but a very challenging problem from the mathematical point of view, are presented in a very simple way. It is shown how this result can be obtained in the context of real Hilbert spaces using the separation theorems.
id RCAP_8c4f3fe6b83c46749c1be8121b5726fd
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/13590
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling The Kuhn-Tucker's theorem for inequalities in infinite dimensionHilbert spacesSeparation theoremsKuhn-Tucker’s theoremInfinite inequalities dimensionIt is intended, in this work, to present the Kuhn-Tucker theorem with the consideration of infinite inequalities. So the mathematical fundaments of this result, not so important in Mathematical Programming but a very challenging problem from the mathematical point of view, are presented in a very simple way. It is shown how this result can be obtained in the context of real Hilbert spaces using the separation theorems.Progress IPS LLC2017-05-26T11:20:58Z2012-01-01T00:00:00Z20122017-05-26T11:20:17Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://ciencia.iscte-iul.pt/id/ci-pub-770http://hdl.handle.net/10071/13590eng2078-0257Ferreira, M. A. M.Filipe, J. A.Andrade, M.info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-07-07T03:03:21Zoai:repositorio.iscte-iul.pt:10071/13590Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T18:14:33.983144Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv The Kuhn-Tucker's theorem for inequalities in infinite dimension
title The Kuhn-Tucker's theorem for inequalities in infinite dimension
spellingShingle The Kuhn-Tucker's theorem for inequalities in infinite dimension
Ferreira, M. A. M.
Hilbert spaces
Separation theorems
Kuhn-Tucker’s theorem
Infinite inequalities dimension
title_short The Kuhn-Tucker's theorem for inequalities in infinite dimension
title_full The Kuhn-Tucker's theorem for inequalities in infinite dimension
title_fullStr The Kuhn-Tucker's theorem for inequalities in infinite dimension
title_full_unstemmed The Kuhn-Tucker's theorem for inequalities in infinite dimension
title_sort The Kuhn-Tucker's theorem for inequalities in infinite dimension
author Ferreira, M. A. M.
author_facet Ferreira, M. A. M.
Filipe, J. A.
Andrade, M.
author_role author
author2 Filipe, J. A.
Andrade, M.
author2_role author
author
dc.contributor.author.fl_str_mv Ferreira, M. A. M.
Filipe, J. A.
Andrade, M.
dc.subject.por.fl_str_mv Hilbert spaces
Separation theorems
Kuhn-Tucker’s theorem
Infinite inequalities dimension
topic Hilbert spaces
Separation theorems
Kuhn-Tucker’s theorem
Infinite inequalities dimension
description It is intended, in this work, to present the Kuhn-Tucker theorem with the consideration of infinite inequalities. So the mathematical fundaments of this result, not so important in Mathematical Programming but a very challenging problem from the mathematical point of view, are presented in a very simple way. It is shown how this result can be obtained in the context of real Hilbert spaces using the separation theorems.
publishDate 2012
dc.date.none.fl_str_mv 2012-01-01T00:00:00Z
2012
2017-05-26T11:20:58Z
2017-05-26T11:20:17Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://ciencia.iscte-iul.pt/id/ci-pub-770
http://hdl.handle.net/10071/13590
url https://ciencia.iscte-iul.pt/id/ci-pub-770
http://hdl.handle.net/10071/13590
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2078-0257
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Progress IPS LLC
publisher.none.fl_str_mv Progress IPS LLC
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833597281460289536