Export Ready — 

BetaBayes—A Bayesian Approach for Comparing Ecological Communities

Bibliographic Details
Main Author: Dias, Filipe S.
Publication Date: 2022
Other Authors: Betancourt, M., Rodriguez-Gonzalez, Patrícia Maria, Borda-de-Água, Luís
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10400.5/26012
Summary: Ecological communities change because of both natural and human factors. Distinguishing between the two is critical to ecology and conservation science. One of the most common approaches for modelling species composition changes is calculating beta diversity indices and then relating index changes to environmental changes. The main difficulty with these analyses is that beta diversity indices are paired comparisons, which means indices calculated with the same community are not independent. Mantel tests and generalised dissimilarity modelling (GDM) are two of the most commonly used statistical procedures for analysing such data, employing randomisation tests to consider the data’s dependence. Here, we introduce a Bayesian model-based approach called BetaBayes that explicitly incorporates the data dependence. This approach is based on the Bradley– Terry model, which is a widely used approach for modelling paired comparisons that involves building a standard regression model containing two varying intercepts, one for each community involved in the beta diversity index, that capture their respective contributions. We used BetaBayes to analyse a famous dataset collected in Panama that contains information on multiple 1 ha plots from the rain forests of Panama. We calculated the Bray–Curtis index between all pairs of plots, analysed the relationship between the index and two covariates (geographic distance and elevation), and compared the results of BetaBayes with those from the Mantel test and GDM. BetaBayes has two distinctive features. The first is its flexibility, which allows the user to quickly change it to fit the data structure; namely, by adding varying effects, incorporating spatial autocorrelation, and modelling complex nonlinear relationships. The second is that it provides a clear path for performing model validation and model improvement. BetaBayes avoids hypothesis testing, instead focusing on recreating the data generating process and quantifying all the model configurations that are consistent with the observed data
id RCAP_8a6a532cf10f5d86c72e8ef770be068e
oai_identifier_str oai:repositorio.ulisboa.pt:10400.5/26012
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling BetaBayes—A Bayesian Approach for Comparing Ecological Communitiesbeta diversitycommunity similaritypairwise comparisonsBradley–Terry modelsPanamaEcological communities change because of both natural and human factors. Distinguishing between the two is critical to ecology and conservation science. One of the most common approaches for modelling species composition changes is calculating beta diversity indices and then relating index changes to environmental changes. The main difficulty with these analyses is that beta diversity indices are paired comparisons, which means indices calculated with the same community are not independent. Mantel tests and generalised dissimilarity modelling (GDM) are two of the most commonly used statistical procedures for analysing such data, employing randomisation tests to consider the data’s dependence. Here, we introduce a Bayesian model-based approach called BetaBayes that explicitly incorporates the data dependence. This approach is based on the Bradley– Terry model, which is a widely used approach for modelling paired comparisons that involves building a standard regression model containing two varying intercepts, one for each community involved in the beta diversity index, that capture their respective contributions. We used BetaBayes to analyse a famous dataset collected in Panama that contains information on multiple 1 ha plots from the rain forests of Panama. We calculated the Bray–Curtis index between all pairs of plots, analysed the relationship between the index and two covariates (geographic distance and elevation), and compared the results of BetaBayes with those from the Mantel test and GDM. BetaBayes has two distinctive features. The first is its flexibility, which allows the user to quickly change it to fit the data structure; namely, by adding varying effects, incorporating spatial autocorrelation, and modelling complex nonlinear relationships. The second is that it provides a clear path for performing model validation and model improvement. BetaBayes avoids hypothesis testing, instead focusing on recreating the data generating process and quantifying all the model configurations that are consistent with the observed dataMDPIRepositório da Universidade de LisboaDias, Filipe S.Betancourt, M.Rodriguez-Gonzalez, Patrícia MariaBorda-de-Água, Luís2022-11-11T10:32:49Z20222022-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.5/26012engDias, F.S.; Betancourt, M.; Rodríguez-González, P.M.; Borda-de-Água, L. BetaBayes—A Bayesian Approach for Comparing Ecological Communities. Diversity 2022, 14, 858https://doi.org/ 10.3390/d14100858info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-17T15:56:24Zoai:repositorio.ulisboa.pt:10400.5/26012Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T03:58:07.804139Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv BetaBayes—A Bayesian Approach for Comparing Ecological Communities
title BetaBayes—A Bayesian Approach for Comparing Ecological Communities
spellingShingle BetaBayes—A Bayesian Approach for Comparing Ecological Communities
Dias, Filipe S.
beta diversity
community similarity
pairwise comparisons
Bradley–Terry models
Panama
title_short BetaBayes—A Bayesian Approach for Comparing Ecological Communities
title_full BetaBayes—A Bayesian Approach for Comparing Ecological Communities
title_fullStr BetaBayes—A Bayesian Approach for Comparing Ecological Communities
title_full_unstemmed BetaBayes—A Bayesian Approach for Comparing Ecological Communities
title_sort BetaBayes—A Bayesian Approach for Comparing Ecological Communities
author Dias, Filipe S.
author_facet Dias, Filipe S.
Betancourt, M.
Rodriguez-Gonzalez, Patrícia Maria
Borda-de-Água, Luís
author_role author
author2 Betancourt, M.
Rodriguez-Gonzalez, Patrícia Maria
Borda-de-Água, Luís
author2_role author
author
author
dc.contributor.none.fl_str_mv Repositório da Universidade de Lisboa
dc.contributor.author.fl_str_mv Dias, Filipe S.
Betancourt, M.
Rodriguez-Gonzalez, Patrícia Maria
Borda-de-Água, Luís
dc.subject.por.fl_str_mv beta diversity
community similarity
pairwise comparisons
Bradley–Terry models
Panama
topic beta diversity
community similarity
pairwise comparisons
Bradley–Terry models
Panama
description Ecological communities change because of both natural and human factors. Distinguishing between the two is critical to ecology and conservation science. One of the most common approaches for modelling species composition changes is calculating beta diversity indices and then relating index changes to environmental changes. The main difficulty with these analyses is that beta diversity indices are paired comparisons, which means indices calculated with the same community are not independent. Mantel tests and generalised dissimilarity modelling (GDM) are two of the most commonly used statistical procedures for analysing such data, employing randomisation tests to consider the data’s dependence. Here, we introduce a Bayesian model-based approach called BetaBayes that explicitly incorporates the data dependence. This approach is based on the Bradley– Terry model, which is a widely used approach for modelling paired comparisons that involves building a standard regression model containing two varying intercepts, one for each community involved in the beta diversity index, that capture their respective contributions. We used BetaBayes to analyse a famous dataset collected in Panama that contains information on multiple 1 ha plots from the rain forests of Panama. We calculated the Bray–Curtis index between all pairs of plots, analysed the relationship between the index and two covariates (geographic distance and elevation), and compared the results of BetaBayes with those from the Mantel test and GDM. BetaBayes has two distinctive features. The first is its flexibility, which allows the user to quickly change it to fit the data structure; namely, by adding varying effects, incorporating spatial autocorrelation, and modelling complex nonlinear relationships. The second is that it provides a clear path for performing model validation and model improvement. BetaBayes avoids hypothesis testing, instead focusing on recreating the data generating process and quantifying all the model configurations that are consistent with the observed data
publishDate 2022
dc.date.none.fl_str_mv 2022-11-11T10:32:49Z
2022
2022-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.5/26012
url http://hdl.handle.net/10400.5/26012
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Dias, F.S.; Betancourt, M.; Rodríguez-González, P.M.; Borda-de-Água, L. BetaBayes—A Bayesian Approach for Comparing Ecological Communities. Diversity 2022, 14, 858
https://doi.org/ 10.3390/d14100858
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833601895875215360