Hygrothermal durability of bond in FRP-strengthened masonry
Main Author: | |
---|---|
Publication Date: | 2014 |
Other Authors: | , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/1822/32840 |
Summary: | Fiber reinforced polymers (FRPs) are accepted as an efficient material for external strengthening of masonry structures. Previous researches have shown that the bond between FRP and the substrate plays an important role in the effectiveness of this strengthening technique. Extensive investigations have been devoted to the characterization of the short-term bond behavior, while its durability and long-term performance requires further studies. In this regard, a full experimental program for investigating the environmental durability of bond in FRP-strengthened masonry is crucial for understanding the degrading mechanisms. This paper presents the results of an experimental program aimed at investigating the hygrothermal durability of bond in FRP-strengthened bricks. Accelerated ageing tests were performed on the FRP-strengthened brick elements and the bond degradation was periodically investigated by visual inspection and by conventional single-lap shear bond tests. The changes in the properties of material constituents have also been monitored. The obtained results are presented and critically discussed. |
id |
RCAP_89d3922bd6e2209e2f28c68744e367cd |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/32840 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Hygrothermal durability of bond in FRP-strengthened masonryFRPmasonrybonddurabilityhygrothermalaccelerated ageingEngenharia e Tecnologia::Engenharia CivilScience & TechnologyFiber reinforced polymers (FRPs) are accepted as an efficient material for external strengthening of masonry structures. Previous researches have shown that the bond between FRP and the substrate plays an important role in the effectiveness of this strengthening technique. Extensive investigations have been devoted to the characterization of the short-term bond behavior, while its durability and long-term performance requires further studies. In this regard, a full experimental program for investigating the environmental durability of bond in FRP-strengthened masonry is crucial for understanding the degrading mechanisms. This paper presents the results of an experimental program aimed at investigating the hygrothermal durability of bond in FRP-strengthened bricks. Accelerated ageing tests were performed on the FRP-strengthened brick elements and the bond degradation was periodically investigated by visual inspection and by conventional single-lap shear bond tests. The changes in the properties of material constituents have also been monitored. The obtained results are presented and critically discussed.This work was developed within the framework of the RILEM Technical Committee "223-MSC: Masonry Strengthening with Composite Materials". The financial support from the project FP7-ENV-2009-1-244123-NIKER of the 7th Framework Program of the European Commission is gratefully acknowledged. The first author also acknowledges the financial support of the Portuguese Science Foundation (Fundacao de Ciencia e Tecnologia, FCT), through grant SFRH/BD/80697/2011.SpringerUniversidade do MinhoGhiassi, BahmanOliveira, Daniel V.Lourenço, Paulo B.20142014-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/32840eng1359-599710.1617/s11527-014-0375-7info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T05:41:57Zoai:repositorium.sdum.uminho.pt:1822/32840Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T15:27:13.550052Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Hygrothermal durability of bond in FRP-strengthened masonry |
title |
Hygrothermal durability of bond in FRP-strengthened masonry |
spellingShingle |
Hygrothermal durability of bond in FRP-strengthened masonry Ghiassi, Bahman FRP masonry bond durability hygrothermal accelerated ageing Engenharia e Tecnologia::Engenharia Civil Science & Technology |
title_short |
Hygrothermal durability of bond in FRP-strengthened masonry |
title_full |
Hygrothermal durability of bond in FRP-strengthened masonry |
title_fullStr |
Hygrothermal durability of bond in FRP-strengthened masonry |
title_full_unstemmed |
Hygrothermal durability of bond in FRP-strengthened masonry |
title_sort |
Hygrothermal durability of bond in FRP-strengthened masonry |
author |
Ghiassi, Bahman |
author_facet |
Ghiassi, Bahman Oliveira, Daniel V. Lourenço, Paulo B. |
author_role |
author |
author2 |
Oliveira, Daniel V. Lourenço, Paulo B. |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Ghiassi, Bahman Oliveira, Daniel V. Lourenço, Paulo B. |
dc.subject.por.fl_str_mv |
FRP masonry bond durability hygrothermal accelerated ageing Engenharia e Tecnologia::Engenharia Civil Science & Technology |
topic |
FRP masonry bond durability hygrothermal accelerated ageing Engenharia e Tecnologia::Engenharia Civil Science & Technology |
description |
Fiber reinforced polymers (FRPs) are accepted as an efficient material for external strengthening of masonry structures. Previous researches have shown that the bond between FRP and the substrate plays an important role in the effectiveness of this strengthening technique. Extensive investigations have been devoted to the characterization of the short-term bond behavior, while its durability and long-term performance requires further studies. In this regard, a full experimental program for investigating the environmental durability of bond in FRP-strengthened masonry is crucial for understanding the degrading mechanisms. This paper presents the results of an experimental program aimed at investigating the hygrothermal durability of bond in FRP-strengthened bricks. Accelerated ageing tests were performed on the FRP-strengthened brick elements and the bond degradation was periodically investigated by visual inspection and by conventional single-lap shear bond tests. The changes in the properties of material constituents have also been monitored. The obtained results are presented and critically discussed. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014 2014-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/32840 |
url |
http://hdl.handle.net/1822/32840 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1359-5997 10.1617/s11527-014-0375-7 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833595322660552704 |