Modelling a Deep Learning Framework for recognition of human actions on video
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , , , , , |
Idioma: | eng |
Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Texto Completo: | https://hdl.handle.net/1822/89902 |
Resumo: | In Human action recognition, the identification of actions is a system that can detect human activities. The types of human activity are classified into four different categories, depending on the complexity of the steps and the number of body parts involved in the action, namely gestures, actions, interactions, and activities [1]. It is challenging for video Human action recognition to capture useful and discriminative features because of the human body's variations. To obtain Intelligent Solutions for action recognition, it is necessary to training models to recognize which action is performed by a person. This paper conducted an experience on Human action recognition compare several deep learning models with a small dataset. The main goal is to obtain the same or better results than the literature, which apply a bigger dataset with the necessity of high-performance hardware. Our analysis provides a roadmap to reach the training, classification, and validation of each model. |
id |
RCAP_891c3da2375c4eb21f30c9826d73f68f |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/89902 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Modelling a Deep Learning Framework for recognition of human actions on videoAction recognitionDeep learning modelsVideo intelligent solutionsEngenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaIn Human action recognition, the identification of actions is a system that can detect human activities. The types of human activity are classified into four different categories, depending on the complexity of the steps and the number of body parts involved in the action, namely gestures, actions, interactions, and activities [1]. It is challenging for video Human action recognition to capture useful and discriminative features because of the human body's variations. To obtain Intelligent Solutions for action recognition, it is necessary to training models to recognize which action is performed by a person. This paper conducted an experience on Human action recognition compare several deep learning models with a small dataset. The main goal is to obtain the same or better results than the literature, which apply a bigger dataset with the necessity of high-performance hardware. Our analysis provides a roadmap to reach the training, classification, and validation of each model.This work is supported by: European Structural and Investment Funds in the FEDER component, through the Operational Competitiveness and Internationalization Programme (COMPETE 2020) [Project nº 039334; Funding Reference: POCI-01-0247-FEDER- 039334].Springer, ChamUniversidade do MinhoSantos, FlávioDurães, DalilaMarcondes, FranciscoGomes, MarcoGonçalves, FilipeFonseca, JoaquimWingbermuehle, JochenMachado, José ManuelNovais, Paulo20212021-01-01T00:00:00Zconference paperinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://hdl.handle.net/1822/89902engSantos, F. et al. (2021). Modelling a Deep Learning Framework for Recognition of Human Actions on Video. In: Rocha, Á., Adeli, H., Dzemyda, G., Moreira, F., Ramalho Correia, A.M. (eds) Trends and Applications in Information Systems and Technologies. WorldCIST 2021. Advances in Intelligent Systems and Computing, vol 1365. Springer, Cham. https://doi.org/10.1007/978-3-030-72657-7_10978-3-030-72656-02194-535710.1007/978-3-030-72657-7_10978-3-030-72657-7https://link.springer.com/chapter/10.1007/978-3-030-72657-7_10info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-11-30T01:17:09Zoai:repositorium.sdum.uminho.pt:1822/89902Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:42:06.278039Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Modelling a Deep Learning Framework for recognition of human actions on video |
title |
Modelling a Deep Learning Framework for recognition of human actions on video |
spellingShingle |
Modelling a Deep Learning Framework for recognition of human actions on video Santos, Flávio Action recognition Deep learning models Video intelligent solutions Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
title_short |
Modelling a Deep Learning Framework for recognition of human actions on video |
title_full |
Modelling a Deep Learning Framework for recognition of human actions on video |
title_fullStr |
Modelling a Deep Learning Framework for recognition of human actions on video |
title_full_unstemmed |
Modelling a Deep Learning Framework for recognition of human actions on video |
title_sort |
Modelling a Deep Learning Framework for recognition of human actions on video |
author |
Santos, Flávio |
author_facet |
Santos, Flávio Durães, Dalila Marcondes, Francisco Gomes, Marco Gonçalves, Filipe Fonseca, Joaquim Wingbermuehle, Jochen Machado, José Manuel Novais, Paulo |
author_role |
author |
author2 |
Durães, Dalila Marcondes, Francisco Gomes, Marco Gonçalves, Filipe Fonseca, Joaquim Wingbermuehle, Jochen Machado, José Manuel Novais, Paulo |
author2_role |
author author author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Santos, Flávio Durães, Dalila Marcondes, Francisco Gomes, Marco Gonçalves, Filipe Fonseca, Joaquim Wingbermuehle, Jochen Machado, José Manuel Novais, Paulo |
dc.subject.por.fl_str_mv |
Action recognition Deep learning models Video intelligent solutions Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
topic |
Action recognition Deep learning models Video intelligent solutions Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
description |
In Human action recognition, the identification of actions is a system that can detect human activities. The types of human activity are classified into four different categories, depending on the complexity of the steps and the number of body parts involved in the action, namely gestures, actions, interactions, and activities [1]. It is challenging for video Human action recognition to capture useful and discriminative features because of the human body's variations. To obtain Intelligent Solutions for action recognition, it is necessary to training models to recognize which action is performed by a person. This paper conducted an experience on Human action recognition compare several deep learning models with a small dataset. The main goal is to obtain the same or better results than the literature, which apply a bigger dataset with the necessity of high-performance hardware. Our analysis provides a roadmap to reach the training, classification, and validation of each model. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021 2021-01-01T00:00:00Z |
dc.type.driver.fl_str_mv |
conference paper |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1822/89902 |
url |
https://hdl.handle.net/1822/89902 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Santos, F. et al. (2021). Modelling a Deep Learning Framework for Recognition of Human Actions on Video. In: Rocha, Á., Adeli, H., Dzemyda, G., Moreira, F., Ramalho Correia, A.M. (eds) Trends and Applications in Information Systems and Technologies. WorldCIST 2021. Advances in Intelligent Systems and Computing, vol 1365. Springer, Cham. https://doi.org/10.1007/978-3-030-72657-7_10 978-3-030-72656-0 2194-5357 10.1007/978-3-030-72657-7_10 978-3-030-72657-7 https://link.springer.com/chapter/10.1007/978-3-030-72657-7_10 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer, Cham |
publisher.none.fl_str_mv |
Springer, Cham |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833594829113655296 |