Modelling a Deep Learning Framework for recognition of human actions on video

Detalhes bibliográficos
Autor(a) principal: Santos, Flávio
Data de Publicação: 2021
Outros Autores: Durães, Dalila, Marcondes, Francisco, Gomes, Marco, Gonçalves, Filipe, Fonseca, Joaquim, Wingbermuehle, Jochen, Machado, José Manuel, Novais, Paulo
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: https://hdl.handle.net/1822/89902
Resumo: In Human action recognition, the identification of actions is a system that can detect human activities. The types of human activity are classified into four different categories, depending on the complexity of the steps and the number of body parts involved in the action, namely gestures, actions, interactions, and activities [1]. It is challenging for video Human action recognition to capture useful and discriminative features because of the human body's variations. To obtain Intelligent Solutions for action recognition, it is necessary to training models to recognize which action is performed by a person. This paper conducted an experience on Human action recognition compare several deep learning models with a small dataset. The main goal is to obtain the same or better results than the literature, which apply a bigger dataset with the necessity of high-performance hardware. Our analysis provides a roadmap to reach the training, classification, and validation of each model.
id RCAP_891c3da2375c4eb21f30c9826d73f68f
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/89902
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Modelling a Deep Learning Framework for recognition of human actions on videoAction recognitionDeep learning modelsVideo intelligent solutionsEngenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaIn Human action recognition, the identification of actions is a system that can detect human activities. The types of human activity are classified into four different categories, depending on the complexity of the steps and the number of body parts involved in the action, namely gestures, actions, interactions, and activities [1]. It is challenging for video Human action recognition to capture useful and discriminative features because of the human body's variations. To obtain Intelligent Solutions for action recognition, it is necessary to training models to recognize which action is performed by a person. This paper conducted an experience on Human action recognition compare several deep learning models with a small dataset. The main goal is to obtain the same or better results than the literature, which apply a bigger dataset with the necessity of high-performance hardware. Our analysis provides a roadmap to reach the training, classification, and validation of each model.This work is supported by: European Structural and Investment Funds in the FEDER component, through the Operational Competitiveness and Internationalization Programme (COMPETE 2020) [Project nº 039334; Funding Reference: POCI-01-0247-FEDER- 039334].Springer, ChamUniversidade do MinhoSantos, FlávioDurães, DalilaMarcondes, FranciscoGomes, MarcoGonçalves, FilipeFonseca, JoaquimWingbermuehle, JochenMachado, José ManuelNovais, Paulo20212021-01-01T00:00:00Zconference paperinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://hdl.handle.net/1822/89902engSantos, F. et al. (2021). Modelling a Deep Learning Framework for Recognition of Human Actions on Video. In: Rocha, Á., Adeli, H., Dzemyda, G., Moreira, F., Ramalho Correia, A.M. (eds) Trends and Applications in Information Systems and Technologies. WorldCIST 2021. Advances in Intelligent Systems and Computing, vol 1365. Springer, Cham. https://doi.org/10.1007/978-3-030-72657-7_10978-3-030-72656-02194-535710.1007/978-3-030-72657-7_10978-3-030-72657-7https://link.springer.com/chapter/10.1007/978-3-030-72657-7_10info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-11-30T01:17:09Zoai:repositorium.sdum.uminho.pt:1822/89902Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:42:06.278039Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Modelling a Deep Learning Framework for recognition of human actions on video
title Modelling a Deep Learning Framework for recognition of human actions on video
spellingShingle Modelling a Deep Learning Framework for recognition of human actions on video
Santos, Flávio
Action recognition
Deep learning models
Video intelligent solutions
Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
title_short Modelling a Deep Learning Framework for recognition of human actions on video
title_full Modelling a Deep Learning Framework for recognition of human actions on video
title_fullStr Modelling a Deep Learning Framework for recognition of human actions on video
title_full_unstemmed Modelling a Deep Learning Framework for recognition of human actions on video
title_sort Modelling a Deep Learning Framework for recognition of human actions on video
author Santos, Flávio
author_facet Santos, Flávio
Durães, Dalila
Marcondes, Francisco
Gomes, Marco
Gonçalves, Filipe
Fonseca, Joaquim
Wingbermuehle, Jochen
Machado, José Manuel
Novais, Paulo
author_role author
author2 Durães, Dalila
Marcondes, Francisco
Gomes, Marco
Gonçalves, Filipe
Fonseca, Joaquim
Wingbermuehle, Jochen
Machado, José Manuel
Novais, Paulo
author2_role author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Santos, Flávio
Durães, Dalila
Marcondes, Francisco
Gomes, Marco
Gonçalves, Filipe
Fonseca, Joaquim
Wingbermuehle, Jochen
Machado, José Manuel
Novais, Paulo
dc.subject.por.fl_str_mv Action recognition
Deep learning models
Video intelligent solutions
Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
topic Action recognition
Deep learning models
Video intelligent solutions
Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
description In Human action recognition, the identification of actions is a system that can detect human activities. The types of human activity are classified into four different categories, depending on the complexity of the steps and the number of body parts involved in the action, namely gestures, actions, interactions, and activities [1]. It is challenging for video Human action recognition to capture useful and discriminative features because of the human body's variations. To obtain Intelligent Solutions for action recognition, it is necessary to training models to recognize which action is performed by a person. This paper conducted an experience on Human action recognition compare several deep learning models with a small dataset. The main goal is to obtain the same or better results than the literature, which apply a bigger dataset with the necessity of high-performance hardware. Our analysis provides a roadmap to reach the training, classification, and validation of each model.
publishDate 2021
dc.date.none.fl_str_mv 2021
2021-01-01T00:00:00Z
dc.type.driver.fl_str_mv conference paper
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1822/89902
url https://hdl.handle.net/1822/89902
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Santos, F. et al. (2021). Modelling a Deep Learning Framework for Recognition of Human Actions on Video. In: Rocha, Á., Adeli, H., Dzemyda, G., Moreira, F., Ramalho Correia, A.M. (eds) Trends and Applications in Information Systems and Technologies. WorldCIST 2021. Advances in Intelligent Systems and Computing, vol 1365. Springer, Cham. https://doi.org/10.1007/978-3-030-72657-7_10
978-3-030-72656-0
2194-5357
10.1007/978-3-030-72657-7_10
978-3-030-72657-7
https://link.springer.com/chapter/10.1007/978-3-030-72657-7_10
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer, Cham
publisher.none.fl_str_mv Springer, Cham
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833594829113655296