A bundle of services to develop better Machine Learning applications
Main Author: | |
---|---|
Publication Date: | 2022 |
Format: | Master thesis |
Language: | por |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10400.22/22510 |
Summary: | Inteligência Artificial (IA) é um tema na moda atualmente. Machine Learning (ML) é a área mais comum de aplicação de IA, e como o nome indica, o objetivo é fazer com que a máquina aprenda. Essa aprendizagem pode ser a simulação de tarefas repetitivas do Homem, para, por exemplo, testar cenários hipotéticos ou até mesmo substituir a mão de obra humana. Pode inclusivamente, ser uma simulação a nível físico como a nível mental, ou seja, envolver o deslocamento de algum objeto, ou ainda o raciocínio ou o resultado deste de um indivíduo. Estes sistemas inteligentes podem até superar o intelecto do Homem. No entanto, é necessário haver restrições da sua aplicação em determinados domínios mais sensíveis onde exista um direito à explicação, como refere o Regulamento Geral sobre a Proteção de Dados 2016/679 (RGPD), em que qualquer decisão que tenha por base um sistema inteligente tem de ser justificada. Como refere o Regulamento Europeu para a Inteligência Artificial, principalmente no ponto 3.5, o uso de IA pode afetar significativamente um elevado número de fatores relacionado com os direitos fundamentais do ser humano. Existe, portanto, a necessidade de assegurar o direito à dignidade humana, respeito pela privacidade, não discriminação e igualdade de género. É necessário garantir também que todos os intervenientes afetados por um sistema de IA tenham as mesmas condições de trabalho e de segurança. De facto, grande parte das aplicações de ML têm como intuito auxiliar o ser humano, como, por exemplo, ajudar o gestor de alguma empresa a tomar uma decisão e/ou explicá-la. O problema é que os algoritmos conhecidos por oferecerem uma melhor performance, tais como redes neuronais que são uma abordagem inspirada no funcionamento do sistema nervoso dos mamíferos, são também aqueles cujo funcionamento ou o porquê de tomarem determinadas previsões é mais difícil de decifrar. Nesse sentido, motivado pelas novas normas do RGPD e por questões éticas, e com um caso real de aplicação no domínio de deteção de fraude fiscal, um dos objetivos deste trabalho é explicar o porquê das previsões elaboradas pelos algoritmos conhecidos por black-box. Não obstante, o trabalho pode ser aplicado a outros algoritmos em que falte a componente explicativa, e outros domínios que necessitem de uma decisão apoiada numa explicação. A solução proposta é o desenvolvimento de raiz de um sistema inteligente na área XAI (Explainable Artificial Intelligence), que seja incorporado e contribua para um sistema de ML já existente com justificações plausíveis e transparentes sobre as previsões dadas por outros modelos de ML. Outro desafio destes sistemas inteligentes é a necessidade de um constante retreino de modelos, dado que novos dados chegam ao sistema, para não ficarem obsoletos com o tempo por já não conseguirem eficazmente realizar uma previsão. Contudo, uma maior quantidade de dados não significa necessariamente novos padrões, correndo-se o risco de se desperdiçar recursos a re-treinar um modelo cuja performance não é superior à sua anterior versão. Para abordar este problema, propõe-se o uso de meta-learning para prever a performance de um modelo de ML com base nas características do dataset (caracterizadas por meta-features). Resumidamente, será construído um meta-modelo com base nas meta-features de vários datasets, que terá a capacidade de prever uma métrica de erro de um futuro modelo de ML, e.g. RMSE, MSE, R², MAE, incluindo o tempo que demora a treinar o modelo, permitindo assim decidir quanto ao re-treino ou não do modelo. Este conjunto de serviços para ML permitirá desenvolver melhores modelos, quer do ponto de vista ético, quer do ponto de vista da sua eficiência. |
id |
RCAP_843fcc33af855d1d1a71463df25552d1 |
---|---|
oai_identifier_str |
oai:recipp.ipp.pt:10400.22/22510 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
A bundle of services to develop better Machine Learning applicationsInteractive Machine LearningMeta-LearningError PredictionExplainable Artificial IntelligenceInteligência Artificial (IA) é um tema na moda atualmente. Machine Learning (ML) é a área mais comum de aplicação de IA, e como o nome indica, o objetivo é fazer com que a máquina aprenda. Essa aprendizagem pode ser a simulação de tarefas repetitivas do Homem, para, por exemplo, testar cenários hipotéticos ou até mesmo substituir a mão de obra humana. Pode inclusivamente, ser uma simulação a nível físico como a nível mental, ou seja, envolver o deslocamento de algum objeto, ou ainda o raciocínio ou o resultado deste de um indivíduo. Estes sistemas inteligentes podem até superar o intelecto do Homem. No entanto, é necessário haver restrições da sua aplicação em determinados domínios mais sensíveis onde exista um direito à explicação, como refere o Regulamento Geral sobre a Proteção de Dados 2016/679 (RGPD), em que qualquer decisão que tenha por base um sistema inteligente tem de ser justificada. Como refere o Regulamento Europeu para a Inteligência Artificial, principalmente no ponto 3.5, o uso de IA pode afetar significativamente um elevado número de fatores relacionado com os direitos fundamentais do ser humano. Existe, portanto, a necessidade de assegurar o direito à dignidade humana, respeito pela privacidade, não discriminação e igualdade de género. É necessário garantir também que todos os intervenientes afetados por um sistema de IA tenham as mesmas condições de trabalho e de segurança. De facto, grande parte das aplicações de ML têm como intuito auxiliar o ser humano, como, por exemplo, ajudar o gestor de alguma empresa a tomar uma decisão e/ou explicá-la. O problema é que os algoritmos conhecidos por oferecerem uma melhor performance, tais como redes neuronais que são uma abordagem inspirada no funcionamento do sistema nervoso dos mamíferos, são também aqueles cujo funcionamento ou o porquê de tomarem determinadas previsões é mais difícil de decifrar. Nesse sentido, motivado pelas novas normas do RGPD e por questões éticas, e com um caso real de aplicação no domínio de deteção de fraude fiscal, um dos objetivos deste trabalho é explicar o porquê das previsões elaboradas pelos algoritmos conhecidos por black-box. Não obstante, o trabalho pode ser aplicado a outros algoritmos em que falte a componente explicativa, e outros domínios que necessitem de uma decisão apoiada numa explicação. A solução proposta é o desenvolvimento de raiz de um sistema inteligente na área XAI (Explainable Artificial Intelligence), que seja incorporado e contribua para um sistema de ML já existente com justificações plausíveis e transparentes sobre as previsões dadas por outros modelos de ML. Outro desafio destes sistemas inteligentes é a necessidade de um constante retreino de modelos, dado que novos dados chegam ao sistema, para não ficarem obsoletos com o tempo por já não conseguirem eficazmente realizar uma previsão. Contudo, uma maior quantidade de dados não significa necessariamente novos padrões, correndo-se o risco de se desperdiçar recursos a re-treinar um modelo cuja performance não é superior à sua anterior versão. Para abordar este problema, propõe-se o uso de meta-learning para prever a performance de um modelo de ML com base nas características do dataset (caracterizadas por meta-features). Resumidamente, será construído um meta-modelo com base nas meta-features de vários datasets, que terá a capacidade de prever uma métrica de erro de um futuro modelo de ML, e.g. RMSE, MSE, R², MAE, incluindo o tempo que demora a treinar o modelo, permitindo assim decidir quanto ao re-treino ou não do modelo. Este conjunto de serviços para ML permitirá desenvolver melhores modelos, quer do ponto de vista ético, quer do ponto de vista da sua eficiência.Carneiro, Davide RuaREPOSITÓRIO P.PORTOGuimarães, Miguel Ângelo Machado2023-03-15T12:35:06Z202220222022-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.22/22510urn:tid:203153359porinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-07T10:12:43Zoai:recipp.ipp.pt:10400.22/22510Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T00:42:00.777714Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
A bundle of services to develop better Machine Learning applications |
title |
A bundle of services to develop better Machine Learning applications |
spellingShingle |
A bundle of services to develop better Machine Learning applications Guimarães, Miguel Ângelo Machado Interactive Machine Learning Meta-Learning Error Prediction Explainable Artificial Intelligence |
title_short |
A bundle of services to develop better Machine Learning applications |
title_full |
A bundle of services to develop better Machine Learning applications |
title_fullStr |
A bundle of services to develop better Machine Learning applications |
title_full_unstemmed |
A bundle of services to develop better Machine Learning applications |
title_sort |
A bundle of services to develop better Machine Learning applications |
author |
Guimarães, Miguel Ângelo Machado |
author_facet |
Guimarães, Miguel Ângelo Machado |
author_role |
author |
dc.contributor.none.fl_str_mv |
Carneiro, Davide Rua REPOSITÓRIO P.PORTO |
dc.contributor.author.fl_str_mv |
Guimarães, Miguel Ângelo Machado |
dc.subject.por.fl_str_mv |
Interactive Machine Learning Meta-Learning Error Prediction Explainable Artificial Intelligence |
topic |
Interactive Machine Learning Meta-Learning Error Prediction Explainable Artificial Intelligence |
description |
Inteligência Artificial (IA) é um tema na moda atualmente. Machine Learning (ML) é a área mais comum de aplicação de IA, e como o nome indica, o objetivo é fazer com que a máquina aprenda. Essa aprendizagem pode ser a simulação de tarefas repetitivas do Homem, para, por exemplo, testar cenários hipotéticos ou até mesmo substituir a mão de obra humana. Pode inclusivamente, ser uma simulação a nível físico como a nível mental, ou seja, envolver o deslocamento de algum objeto, ou ainda o raciocínio ou o resultado deste de um indivíduo. Estes sistemas inteligentes podem até superar o intelecto do Homem. No entanto, é necessário haver restrições da sua aplicação em determinados domínios mais sensíveis onde exista um direito à explicação, como refere o Regulamento Geral sobre a Proteção de Dados 2016/679 (RGPD), em que qualquer decisão que tenha por base um sistema inteligente tem de ser justificada. Como refere o Regulamento Europeu para a Inteligência Artificial, principalmente no ponto 3.5, o uso de IA pode afetar significativamente um elevado número de fatores relacionado com os direitos fundamentais do ser humano. Existe, portanto, a necessidade de assegurar o direito à dignidade humana, respeito pela privacidade, não discriminação e igualdade de género. É necessário garantir também que todos os intervenientes afetados por um sistema de IA tenham as mesmas condições de trabalho e de segurança. De facto, grande parte das aplicações de ML têm como intuito auxiliar o ser humano, como, por exemplo, ajudar o gestor de alguma empresa a tomar uma decisão e/ou explicá-la. O problema é que os algoritmos conhecidos por oferecerem uma melhor performance, tais como redes neuronais que são uma abordagem inspirada no funcionamento do sistema nervoso dos mamíferos, são também aqueles cujo funcionamento ou o porquê de tomarem determinadas previsões é mais difícil de decifrar. Nesse sentido, motivado pelas novas normas do RGPD e por questões éticas, e com um caso real de aplicação no domínio de deteção de fraude fiscal, um dos objetivos deste trabalho é explicar o porquê das previsões elaboradas pelos algoritmos conhecidos por black-box. Não obstante, o trabalho pode ser aplicado a outros algoritmos em que falte a componente explicativa, e outros domínios que necessitem de uma decisão apoiada numa explicação. A solução proposta é o desenvolvimento de raiz de um sistema inteligente na área XAI (Explainable Artificial Intelligence), que seja incorporado e contribua para um sistema de ML já existente com justificações plausíveis e transparentes sobre as previsões dadas por outros modelos de ML. Outro desafio destes sistemas inteligentes é a necessidade de um constante retreino de modelos, dado que novos dados chegam ao sistema, para não ficarem obsoletos com o tempo por já não conseguirem eficazmente realizar uma previsão. Contudo, uma maior quantidade de dados não significa necessariamente novos padrões, correndo-se o risco de se desperdiçar recursos a re-treinar um modelo cuja performance não é superior à sua anterior versão. Para abordar este problema, propõe-se o uso de meta-learning para prever a performance de um modelo de ML com base nas características do dataset (caracterizadas por meta-features). Resumidamente, será construído um meta-modelo com base nas meta-features de vários datasets, que terá a capacidade de prever uma métrica de erro de um futuro modelo de ML, e.g. RMSE, MSE, R², MAE, incluindo o tempo que demora a treinar o modelo, permitindo assim decidir quanto ao re-treino ou não do modelo. Este conjunto de serviços para ML permitirá desenvolver melhores modelos, quer do ponto de vista ético, quer do ponto de vista da sua eficiência. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022 2022 2022-01-01T00:00:00Z 2023-03-15T12:35:06Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.22/22510 urn:tid:203153359 |
url |
http://hdl.handle.net/10400.22/22510 |
identifier_str_mv |
urn:tid:203153359 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833600657223843840 |