Online Reviews Analysis with Large Language Models
Main Author: | |
---|---|
Publication Date: | 2024 |
Format: | Master thesis |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10362/175580 |
Summary: | Dissertation presented as the partial requirement for obtaining a Master's degree in Data Driven Marketing, specialization in Data Science for Marketing |
id |
RCAP_831d8aa15a3b8e90810f80442dbbd4a6 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/175580 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Online Reviews Analysis with Large Language ModelsLarge Language Models (LLMs)Sentiment AnalysisText miningCustomer feedbackOnline Reviews AnalysisSDG 4 - Quality educationSDG 8 - Decent work and economic growthSDG 9 - Industry, innovation and infrastructureDomínio/Área Científica::Ciências Naturais::Ciências da Computação e da InformaçãoDissertation presented as the partial requirement for obtaining a Master's degree in Data Driven Marketing, specialization in Data Science for MarketingWith the rapid evolution of digital technologies, online reviews have become a pivotal source of customer feedback, creating a need for more efficient tools to rapidly analyze customer opinions. This need motivates the exploration of advanced Artificial Intelligence (AI) techniques to enhance customer feedback analysis. This study investigates the efficacy of utilizing Large Language Models (LLMs), for the comprehensive analysis of online reviews. It focuses on evaluating customer feedback through reviews collected from TripAdvisor for hotels in the Algarve region of Portugal. Using the Azure OpenAI API to implement the GPT-3.5-Turbo-16K model for Text Mining tasks such as sentiment analysis and topic modeling. The primary goal of the study is to demonstrate how LLMs can accurately classify sentiments, identify recurring themes, and extract actionable insights from large datasets of unstructured text. The findings highlight LLMs’ ability to provide detailed real-time insights, easily correctly classifying most of the reviews with Positive classifications and highlighting the most frequent pros and cons mentioned, such as “friendly and helpful staff” and “issues with bar service”, providing detailed suggestions to address negative classifications. The research addresses the limitations of LLMs, such as potential biases and the challenge of maintaining accuracy across different languages and cultural contexts. These findings demonstrate the ability to automatically analyze and extract insights from online reviews, enabling more informed strategic decisions, refined marketing strategies, improved product offerings, and enhanced customer satisfaction.António, Nuno Miguel da ConceiçãoRUNFerreira, Henrique Marques2024-10-262026-10-26T00:00:00Z2024-10-26T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/175580TID:203778502enginfo:eu-repo/semantics/embargoedAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-01-13T01:43:46Zoai:run.unl.pt:10362/175580Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T19:15:55.258987Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Online Reviews Analysis with Large Language Models |
title |
Online Reviews Analysis with Large Language Models |
spellingShingle |
Online Reviews Analysis with Large Language Models Ferreira, Henrique Marques Large Language Models (LLMs) Sentiment Analysis Text mining Customer feedback Online Reviews Analysis SDG 4 - Quality education SDG 8 - Decent work and economic growth SDG 9 - Industry, innovation and infrastructure Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação |
title_short |
Online Reviews Analysis with Large Language Models |
title_full |
Online Reviews Analysis with Large Language Models |
title_fullStr |
Online Reviews Analysis with Large Language Models |
title_full_unstemmed |
Online Reviews Analysis with Large Language Models |
title_sort |
Online Reviews Analysis with Large Language Models |
author |
Ferreira, Henrique Marques |
author_facet |
Ferreira, Henrique Marques |
author_role |
author |
dc.contributor.none.fl_str_mv |
António, Nuno Miguel da Conceição RUN |
dc.contributor.author.fl_str_mv |
Ferreira, Henrique Marques |
dc.subject.por.fl_str_mv |
Large Language Models (LLMs) Sentiment Analysis Text mining Customer feedback Online Reviews Analysis SDG 4 - Quality education SDG 8 - Decent work and economic growth SDG 9 - Industry, innovation and infrastructure Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação |
topic |
Large Language Models (LLMs) Sentiment Analysis Text mining Customer feedback Online Reviews Analysis SDG 4 - Quality education SDG 8 - Decent work and economic growth SDG 9 - Industry, innovation and infrastructure Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação |
description |
Dissertation presented as the partial requirement for obtaining a Master's degree in Data Driven Marketing, specialization in Data Science for Marketing |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-10-26 2024-10-26T00:00:00Z 2026-10-26T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/175580 TID:203778502 |
url |
http://hdl.handle.net/10362/175580 |
identifier_str_mv |
TID:203778502 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833597981161422848 |