Convolutional Neural Networks in Prostate Cancer Detection, Segmentation and Classification using mpMRI images and feature-selected Radiomic Features
| Main Author: | |
|---|---|
| Publication Date: | 2023 |
| Format: | Master thesis |
| Language: | eng |
| Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Download full: | http://hdl.handle.net/10451/62951 |
Summary: | Tese de Mestrado, Engenharia Biomédica e Biofísica, 2024, Universidade de Lisboa, Faculdade de Ciências |
| id |
RCAP_828b46d050e9758c43fb8b02300d0b06 |
|---|---|
| oai_identifier_str |
oai:repositorio.ulisboa.pt:10451/62951 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Convolutional Neural Networks in Prostate Cancer Detection, Segmentation and Classification using mpMRI images and feature-selected Radiomic FeaturesPróstataCancroRessonância Magnética MultiparamétricaU-NetRadiomicsSeleção de featuresTese de mestrado 2024Domínio/Área Científica::Engenharia e Tecnologia::Engenharia MédicaTese de Mestrado, Engenharia Biomédica e Biofísica, 2024, Universidade de Lisboa, Faculdade de CiênciasIn many parts of the western world, prostate cancer is the most diagnosed non-cutaneous cancer in men [4]. Recently, Multi-Parametric Magnetic Resonance Imaging (mpMRI) has been ex plored as a tool for screening and evaluation of prostate cancer, alongside traditional techniques like the Prostate Specific Antigen (PSA) test and biopsy. Analysis of mpMRI requires experience, expertise and time. Machine learning and algorithm based image analysis can be used to assist the radiologist with an automated analysis of the images. For prostate cancer diagnosis and monitoring, these models and algorithms aim to segment the gland, its regions and possible lesions, while classifying them, according to systems like the Prostate Imaging Reporting Data System (PI-RADS) standard [5]. Radiomic features can be used to extract additional information from an image. These reflect various patterns and textures in the MRI image which can indicate abnormalities and prostate cancer. However, the high volume of radiomic features that can be extracted can be overwhelming, so determining which features are the most useful for cancer prediction can be a desirable study. In this dissertation, a procedure for selecting the best features is described. The workflow was designed for a high number of features and multidimensional data, like mpMRI and lesion segmentations. Through Recurdive Feature Elimination (RFE), an array of radiomic features was selected and used on a U-Net for prostate cancer prediction, in order to validate the whole process. The results selected the Wavelet-LLL as the best filter for radiomic feature extraction and the Emphasis features (texture features) as the best for prostate cancer prediction. The final U-Net model built for validation of the results of feature selection displayed acceptable performance overall, with good lesion segmentation capabilities (0,8831 True Positive Ratio (TPR) in the context of the Ground Truth (GT)). It had, however, some difficulties to classify said lesions correctly (71,64% of PI-RADS 4 lesions were misclassified as PI-RADS 5), showing a bias towards classifying most lesions as PI-RADS 5.Conceição, RaquelFinn, SéanRepositório da Universidade de LisboaFidalgo, Miguel Maria Santos202420232026-10-30T00:00:00Z2024-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10451/62951TID:203881621enginfo:eu-repo/semantics/embargoedAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-17T15:12:08Zoai:repositorio.ulisboa.pt:10451/62951Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T03:36:30.871005Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Convolutional Neural Networks in Prostate Cancer Detection, Segmentation and Classification using mpMRI images and feature-selected Radiomic Features |
| title |
Convolutional Neural Networks in Prostate Cancer Detection, Segmentation and Classification using mpMRI images and feature-selected Radiomic Features |
| spellingShingle |
Convolutional Neural Networks in Prostate Cancer Detection, Segmentation and Classification using mpMRI images and feature-selected Radiomic Features Fidalgo, Miguel Maria Santos Próstata Cancro Ressonância Magnética Multiparamétrica U-Net Radiomics Seleção de features Tese de mestrado 2024 Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Médica |
| title_short |
Convolutional Neural Networks in Prostate Cancer Detection, Segmentation and Classification using mpMRI images and feature-selected Radiomic Features |
| title_full |
Convolutional Neural Networks in Prostate Cancer Detection, Segmentation and Classification using mpMRI images and feature-selected Radiomic Features |
| title_fullStr |
Convolutional Neural Networks in Prostate Cancer Detection, Segmentation and Classification using mpMRI images and feature-selected Radiomic Features |
| title_full_unstemmed |
Convolutional Neural Networks in Prostate Cancer Detection, Segmentation and Classification using mpMRI images and feature-selected Radiomic Features |
| title_sort |
Convolutional Neural Networks in Prostate Cancer Detection, Segmentation and Classification using mpMRI images and feature-selected Radiomic Features |
| author |
Fidalgo, Miguel Maria Santos |
| author_facet |
Fidalgo, Miguel Maria Santos |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Conceição, Raquel Finn, Séan Repositório da Universidade de Lisboa |
| dc.contributor.author.fl_str_mv |
Fidalgo, Miguel Maria Santos |
| dc.subject.por.fl_str_mv |
Próstata Cancro Ressonância Magnética Multiparamétrica U-Net Radiomics Seleção de features Tese de mestrado 2024 Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Médica |
| topic |
Próstata Cancro Ressonância Magnética Multiparamétrica U-Net Radiomics Seleção de features Tese de mestrado 2024 Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Médica |
| description |
Tese de Mestrado, Engenharia Biomédica e Biofísica, 2024, Universidade de Lisboa, Faculdade de Ciências |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023 2024 2024-01-01T00:00:00Z 2026-10-30T00:00:00Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10451/62951 TID:203881621 |
| url |
http://hdl.handle.net/10451/62951 |
| identifier_str_mv |
TID:203881621 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
| eu_rights_str_mv |
embargoedAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833601762611691520 |