QoE over-the-top multimedia over wireless networks

Bibliographic Details
Main Author: Dias, André Filipe Pinheiro
Publication Date: 2018
Format: Master thesis
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10773/29108
Summary: One of the goals of an operator is to improve the Quality of Experience (QoE) of a client in networks where Over-the-top (OTT) content is being delivered. The appearance of services like YouTube, Netflix or Twitch, where in the first case it contains more than 300 hours of video per minute in the platform, brings issues to the managed data networks that already exist, as well as challenges to fix them. Video traffic corresponds to 75% of the whole transmitted data on the Internet. This way, not only the Internet did become the ’de facto’ video transmission path, but also the general data traffic continues to exponentially increase, due to the desire to consume more content. This thesis presents two model proposals and architecture that aim to improve the users’ quality of experience, by predicting the amount of video in advance liable of being prefetched, as a way to optimize the delivery efficiency where the quality of service cannot be guaranteed. The prefetch is done in the clients’ closest cache server. For that, an Analytic Hierarchy Process (AHP) is used, where through a subjective method of attribute comparison, and from the application of a weighted function on the measured quality of service metrics, the amount of prefetch is achieved. Besides this method, artificial intelligence techniques are also taken into account. With neural networks, there is an attempt of selflearning with the behavior of OTT networks with more than 14.000 hours of video consumption under different quality conditions, to try to estimate the experience felt and maximize it, without the normal service delivery degradation. At last, both methods are evaluated and a proof of concept is made with users in a high speed train.
id RCAP_81ad8bdf6bcbc852d8e8a8c4a4b9b64e
oai_identifier_str oai:ria.ua.pt:10773/29108
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling QoE over-the-top multimedia over wireless networksOver-the-topMultimediaContent delivery networksCachingQuality of experienceMachine learningOne of the goals of an operator is to improve the Quality of Experience (QoE) of a client in networks where Over-the-top (OTT) content is being delivered. The appearance of services like YouTube, Netflix or Twitch, where in the first case it contains more than 300 hours of video per minute in the platform, brings issues to the managed data networks that already exist, as well as challenges to fix them. Video traffic corresponds to 75% of the whole transmitted data on the Internet. This way, not only the Internet did become the ’de facto’ video transmission path, but also the general data traffic continues to exponentially increase, due to the desire to consume more content. This thesis presents two model proposals and architecture that aim to improve the users’ quality of experience, by predicting the amount of video in advance liable of being prefetched, as a way to optimize the delivery efficiency where the quality of service cannot be guaranteed. The prefetch is done in the clients’ closest cache server. For that, an Analytic Hierarchy Process (AHP) is used, where through a subjective method of attribute comparison, and from the application of a weighted function on the measured quality of service metrics, the amount of prefetch is achieved. Besides this method, artificial intelligence techniques are also taken into account. With neural networks, there is an attempt of selflearning with the behavior of OTT networks with more than 14.000 hours of video consumption under different quality conditions, to try to estimate the experience felt and maximize it, without the normal service delivery degradation. At last, both methods are evaluated and a proof of concept is made with users in a high speed train.Um dos objetivos de um operador é melhorar a qualidade de experiência do cliente em redes onde existem conteúdos Over-the-top (OTT) a serem entregues. O aparecimento de serviços como o YouTube, Netflix ou Twitch, onde no primeiro caso são carregadas mais de 300 horas de vídeo por minuto na plataforma, vem trazer problemas às redes de dados geridas que já existiam, assim como desafios para os resolver. O tráfego de vídeo corresponde a 75% de todos os dados transmitidos na Internet. Assim, não só a Internet se tornou o meio de transmissão de vídeo ’de facto’, como o tráfego de dados em geral continua a crescer exponencialmente, proveniente do desejo de consumir mais conteúdos. Esta tese apresenta duas propostas de modelos e arquitetura que pretendem melhorar a qualidade de experiência do utilizador, ao prever a quantidade de vídeo em avanço passível de ser précarregado, de forma a optimizar a eficiência de entrega das redes onde a qualidade de serviço não é possível de ser garantida. O pré-carregamento dos conteúdos é feito no servidor de cache mais próximo do cliente. Para tal, é utilizado um processo analítico hierárquico (AHP), onde através de um método subjetivo de comparação de atributos, e da aplicação de uma função de valores ponderados nas medições das métricas de qualidade de serviço, é obtida a quantidade a pré-carregar. Além deste método, é também proposta uma abordagem com técnicas de inteligência artificial. Através de redes neurais, há uma tentativa de auto-aprendizagem do comportamento das redes OTT com mais de 14.000 horas de consumo de vídeo sobre diferentes condições de qualidade, para se tentar estimar a experiência sentida e maximizar a mesma, sem degradação da entrega de serviço normal. No final, ambos os métodos propostos são avaliados num cenário de utilizadores num comboio a alta velocidade.2019-12-21T00:00:00Z2018-12-21T00:00:00Z2018-12-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/29108TID:202234169engDias, André Filipe Pinheiroinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T04:27:07Zoai:ria.ua.pt:10773/29108Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:08:56.879604Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv QoE over-the-top multimedia over wireless networks
title QoE over-the-top multimedia over wireless networks
spellingShingle QoE over-the-top multimedia over wireless networks
Dias, André Filipe Pinheiro
Over-the-top
Multimedia
Content delivery networks
Caching
Quality of experience
Machine learning
title_short QoE over-the-top multimedia over wireless networks
title_full QoE over-the-top multimedia over wireless networks
title_fullStr QoE over-the-top multimedia over wireless networks
title_full_unstemmed QoE over-the-top multimedia over wireless networks
title_sort QoE over-the-top multimedia over wireless networks
author Dias, André Filipe Pinheiro
author_facet Dias, André Filipe Pinheiro
author_role author
dc.contributor.author.fl_str_mv Dias, André Filipe Pinheiro
dc.subject.por.fl_str_mv Over-the-top
Multimedia
Content delivery networks
Caching
Quality of experience
Machine learning
topic Over-the-top
Multimedia
Content delivery networks
Caching
Quality of experience
Machine learning
description One of the goals of an operator is to improve the Quality of Experience (QoE) of a client in networks where Over-the-top (OTT) content is being delivered. The appearance of services like YouTube, Netflix or Twitch, where in the first case it contains more than 300 hours of video per minute in the platform, brings issues to the managed data networks that already exist, as well as challenges to fix them. Video traffic corresponds to 75% of the whole transmitted data on the Internet. This way, not only the Internet did become the ’de facto’ video transmission path, but also the general data traffic continues to exponentially increase, due to the desire to consume more content. This thesis presents two model proposals and architecture that aim to improve the users’ quality of experience, by predicting the amount of video in advance liable of being prefetched, as a way to optimize the delivery efficiency where the quality of service cannot be guaranteed. The prefetch is done in the clients’ closest cache server. For that, an Analytic Hierarchy Process (AHP) is used, where through a subjective method of attribute comparison, and from the application of a weighted function on the measured quality of service metrics, the amount of prefetch is achieved. Besides this method, artificial intelligence techniques are also taken into account. With neural networks, there is an attempt of selflearning with the behavior of OTT networks with more than 14.000 hours of video consumption under different quality conditions, to try to estimate the experience felt and maximize it, without the normal service delivery degradation. At last, both methods are evaluated and a proof of concept is made with users in a high speed train.
publishDate 2018
dc.date.none.fl_str_mv 2018-12-21T00:00:00Z
2018-12-21
2019-12-21T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/29108
TID:202234169
url http://hdl.handle.net/10773/29108
identifier_str_mv TID:202234169
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833594332763914240