Data mining techniques for electricity customer characterization
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Texto Completo: | http://hdl.handle.net/10400.22/18404 |
Resumo: | The liberalization of electricity markets has been resulted in the emergence of new players, increasing the competitiveness in the markets, standing those can provide better services for better prices. The knowledge of energy consumers’ profile has been an important tool to help players to make decisions in the electrical sectors. In this paper, a characterization model of typical load curves for Low Voltage (LV) customers is proposed and evaluated. The identification of consumption patterns is based on clustering analysis. The clustering methodology is based on seven algorithms, partitional and hierarchical. Also, five clustering validity indices are used to identify the best data partition. With the knowledge obtained in clustering analysis, a classification model is used to classify new customers according to their consumption data. The classification model is used to select the correct class for each customer. To make the model simple, each load curve is represented by three indices which represent load curves shape. The methodology used in this work demonstrates to be an effective tool and can be used in most diverse sectors, highlighting the use of knowledge in the optimization of the energy contracting for low voltage customers. The energy consumption data can be constantly updated to improve the model precision, finding estimates that can better represent consumers and their consumption habits. |
id |
RCAP_817782702ae5b45cc74a5a699cd4a36c |
---|---|
oai_identifier_str |
oai:recipp.ipp.pt:10400.22/18404 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Data mining techniques for electricity customer characterizationKnowledge discovery in DatabasesData miningClusteringClassificationTypical load profilesThe liberalization of electricity markets has been resulted in the emergence of new players, increasing the competitiveness in the markets, standing those can provide better services for better prices. The knowledge of energy consumers’ profile has been an important tool to help players to make decisions in the electrical sectors. In this paper, a characterization model of typical load curves for Low Voltage (LV) customers is proposed and evaluated. The identification of consumption patterns is based on clustering analysis. The clustering methodology is based on seven algorithms, partitional and hierarchical. Also, five clustering validity indices are used to identify the best data partition. With the knowledge obtained in clustering analysis, a classification model is used to classify new customers according to their consumption data. The classification model is used to select the correct class for each customer. To make the model simple, each load curve is represented by three indices which represent load curves shape. The methodology used in this work demonstrates to be an effective tool and can be used in most diverse sectors, highlighting the use of knowledge in the optimization of the energy contracting for low voltage customers. The energy consumption data can be constantly updated to improve the model precision, finding estimates that can better represent consumers and their consumption habits.ElsevierREPOSITÓRIO P.PORTORamos, Sérgio Filipe CarvalhoSoares, JoãoCembranel, Samuel S.Tavares, InêsForoozandeh, Z.Vale, ZitaFernandes, Rubipiara2021-09-17T10:53:38Z20212021-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/18404eng10.1016/j.procs.2021.04.168info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-04-02T03:17:12Zoai:recipp.ipp.pt:10400.22/18404Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T00:49:57.144462Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Data mining techniques for electricity customer characterization |
title |
Data mining techniques for electricity customer characterization |
spellingShingle |
Data mining techniques for electricity customer characterization Ramos, Sérgio Filipe Carvalho Knowledge discovery in Databases Data mining Clustering Classification Typical load profiles |
title_short |
Data mining techniques for electricity customer characterization |
title_full |
Data mining techniques for electricity customer characterization |
title_fullStr |
Data mining techniques for electricity customer characterization |
title_full_unstemmed |
Data mining techniques for electricity customer characterization |
title_sort |
Data mining techniques for electricity customer characterization |
author |
Ramos, Sérgio Filipe Carvalho |
author_facet |
Ramos, Sérgio Filipe Carvalho Soares, João Cembranel, Samuel S. Tavares, Inês Foroozandeh, Z. Vale, Zita Fernandes, Rubipiara |
author_role |
author |
author2 |
Soares, João Cembranel, Samuel S. Tavares, Inês Foroozandeh, Z. Vale, Zita Fernandes, Rubipiara |
author2_role |
author author author author author author |
dc.contributor.none.fl_str_mv |
REPOSITÓRIO P.PORTO |
dc.contributor.author.fl_str_mv |
Ramos, Sérgio Filipe Carvalho Soares, João Cembranel, Samuel S. Tavares, Inês Foroozandeh, Z. Vale, Zita Fernandes, Rubipiara |
dc.subject.por.fl_str_mv |
Knowledge discovery in Databases Data mining Clustering Classification Typical load profiles |
topic |
Knowledge discovery in Databases Data mining Clustering Classification Typical load profiles |
description |
The liberalization of electricity markets has been resulted in the emergence of new players, increasing the competitiveness in the markets, standing those can provide better services for better prices. The knowledge of energy consumers’ profile has been an important tool to help players to make decisions in the electrical sectors. In this paper, a characterization model of typical load curves for Low Voltage (LV) customers is proposed and evaluated. The identification of consumption patterns is based on clustering analysis. The clustering methodology is based on seven algorithms, partitional and hierarchical. Also, five clustering validity indices are used to identify the best data partition. With the knowledge obtained in clustering analysis, a classification model is used to classify new customers according to their consumption data. The classification model is used to select the correct class for each customer. To make the model simple, each load curve is represented by three indices which represent load curves shape. The methodology used in this work demonstrates to be an effective tool and can be used in most diverse sectors, highlighting the use of knowledge in the optimization of the energy contracting for low voltage customers. The energy consumption data can be constantly updated to improve the model precision, finding estimates that can better represent consumers and their consumption habits. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-09-17T10:53:38Z 2021 2021-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.22/18404 |
url |
http://hdl.handle.net/10400.22/18404 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1016/j.procs.2021.04.168 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833600716683345920 |