Optimized design of neural networks for a river water level prediction system

Bibliographic Details
Main Author: Lineros, Miriam López
Publication Date: 2021
Other Authors: Luna, Antonio Madueño, Ferreira, Pedro M., Ruano, Antonio
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10400.1/17287
Summary: In this paper, a Multi-Objective Genetic Algorithm (MOGA) framework for the design of Artificial Neural Network (ANN) models is used to design 1-step-ahead prediction models of river water levels. The design procedure is a near-automatic method that, given the data at hand, can partition it into datasets and is able to determine a near-optimal model with the right topology and inputs, offering a good performance on unseen data, i.e., data not used for model design. An example using more than 11 years of water level data (593,178 samples) of the Carrión river collected at Villoldo gauge station shows that the MOGA framework can obtain low-complex models with excellent performance on unseen data, achieving an RMSE of 2.5 × 10−3 , which compares favorably with results obtained by alternative design.
id RCAP_7e9eea762e41fa4d5498567a1f32b6c9
oai_identifier_str oai:sapientia.ualg.pt:10400.1/17287
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Optimized design of neural networks for a river water level prediction systemDesign otimizado de redes neurais para um sistema de previsão do nível da água do rioMulti-objective genetic algorithmArtificial neural networksRiver stage dataIn this paper, a Multi-Objective Genetic Algorithm (MOGA) framework for the design of Artificial Neural Network (ANN) models is used to design 1-step-ahead prediction models of river water levels. The design procedure is a near-automatic method that, given the data at hand, can partition it into datasets and is able to determine a near-optimal model with the right topology and inputs, offering a good performance on unseen data, i.e., data not used for model design. An example using more than 11 years of water level data (593,178 samples) of the Carrión river collected at Villoldo gauge station shows that the MOGA framework can obtain low-complex models with excellent performance on unseen data, achieving an RMSE of 2.5 × 10−3 , which compares favorably with results obtained by alternative design.MDPISapientiaLineros, Miriam LópezLuna, Antonio MadueñoFerreira, Pedro M.Ruano, Antonio2021-11-05T13:44:12Z2021-102021-10-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.1/17287eng10.3390/s21196504info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-18T17:46:15Zoai:sapientia.ualg.pt:10400.1/17287Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T20:35:18.778810Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Optimized design of neural networks for a river water level prediction system
Design otimizado de redes neurais para um sistema de previsão do nível da água do rio
title Optimized design of neural networks for a river water level prediction system
spellingShingle Optimized design of neural networks for a river water level prediction system
Lineros, Miriam López
Multi-objective genetic algorithm
Artificial neural networks
River stage data
title_short Optimized design of neural networks for a river water level prediction system
title_full Optimized design of neural networks for a river water level prediction system
title_fullStr Optimized design of neural networks for a river water level prediction system
title_full_unstemmed Optimized design of neural networks for a river water level prediction system
title_sort Optimized design of neural networks for a river water level prediction system
author Lineros, Miriam López
author_facet Lineros, Miriam López
Luna, Antonio Madueño
Ferreira, Pedro M.
Ruano, Antonio
author_role author
author2 Luna, Antonio Madueño
Ferreira, Pedro M.
Ruano, Antonio
author2_role author
author
author
dc.contributor.none.fl_str_mv Sapientia
dc.contributor.author.fl_str_mv Lineros, Miriam López
Luna, Antonio Madueño
Ferreira, Pedro M.
Ruano, Antonio
dc.subject.por.fl_str_mv Multi-objective genetic algorithm
Artificial neural networks
River stage data
topic Multi-objective genetic algorithm
Artificial neural networks
River stage data
description In this paper, a Multi-Objective Genetic Algorithm (MOGA) framework for the design of Artificial Neural Network (ANN) models is used to design 1-step-ahead prediction models of river water levels. The design procedure is a near-automatic method that, given the data at hand, can partition it into datasets and is able to determine a near-optimal model with the right topology and inputs, offering a good performance on unseen data, i.e., data not used for model design. An example using more than 11 years of water level data (593,178 samples) of the Carrión river collected at Villoldo gauge station shows that the MOGA framework can obtain low-complex models with excellent performance on unseen data, achieving an RMSE of 2.5 × 10−3 , which compares favorably with results obtained by alternative design.
publishDate 2021
dc.date.none.fl_str_mv 2021-11-05T13:44:12Z
2021-10
2021-10-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.1/17287
url http://hdl.handle.net/10400.1/17287
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.3390/s21196504
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833598730766385152