Full-Reference Image Quality Expression via Genetic Programming
Main Author: | |
---|---|
Publication Date: | 2023 |
Other Authors: | , , , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10362/149941 |
Summary: | Bakurov, I., Buzzelli, M., Schettini, R., Castelli, M., & Vanneschi, L. (2023). Full-Reference Image Quality Expression via Genetic Programming. IEEE Transactions on Image Processing, 32, 1458-1473. https://doi.org/10.1109/TIP.2023.3244662--- This work was supported by national funds through the FCT (Fundação para a Ciência e a Tecnologia) under the projects Algoritmos de Inteligência artificial no Consumo de crédito e conciliação de Endividamento (AICE) (DSAIPA/DS/0113/2019) and UIDB/04152/2020 - Centro de Investigação em Gestão de Informação (MagIC)/NOVA IMS. Mauro Castelli acknowledges the financial support from the Slovenian Research Agency (research core funding no. P5-0410). |
id |
RCAP_7bfeeffebd1874f77c9f687078ef618a |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/149941 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Full-Reference Image Quality Expression via Genetic Programmingimage qualityfull-reference image quality assessmentimage similarityssimgenetic programmingSoftwareComputer Graphics and Computer-Aided DesignBakurov, I., Buzzelli, M., Schettini, R., Castelli, M., & Vanneschi, L. (2023). Full-Reference Image Quality Expression via Genetic Programming. IEEE Transactions on Image Processing, 32, 1458-1473. https://doi.org/10.1109/TIP.2023.3244662--- This work was supported by national funds through the FCT (Fundação para a Ciência e a Tecnologia) under the projects Algoritmos de Inteligência artificial no Consumo de crédito e conciliação de Endividamento (AICE) (DSAIPA/DS/0113/2019) and UIDB/04152/2020 - Centro de Investigação em Gestão de Informação (MagIC)/NOVA IMS. Mauro Castelli acknowledges the financial support from the Slovenian Research Agency (research core funding no. P5-0410).Full-reference image quality measures are a fundamental tool to approximate the human visual system in various applications for digital data management: from retrieval to compression to detection of unauthorized uses. Inspired by both the effectiveness and the simplicity of hand-crafted Structural Similarity Index Measure (SSIM), in this work, we present a framework for the formulation of SSIM-like image quality measures through genetic programming. We explore different terminal sets, defined from the building blocks of structural similarity at different levels of abstraction, and we propose a two-stage genetic optimization that exploits hoist mutation to constrain the complexity of the solutions. Our optimized measures are selected through a cross-dataset validation procedure, which results in superior performance against different versions of structural similarity, measured as correlation with human mean opinion scores. We also demonstrate how, by tuning on specific datasets, it is possible to obtain solutions that are competitive with (or even outperform) more complex image quality measures.NOVA Information Management School (NOVA IMS)Information Management Research Center (MagIC) - NOVA Information Management SchoolRUNBakurov, IllyaBuzzelli, MarcoSchettini, RaimondoCastelli, MauroVanneschi, Leonardo2023-03-02T22:27:05Z2023-03-012023-03-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article16application/pdfapplication/pdfhttp://hdl.handle.net/10362/149941eng1941-0042PURE: 52561008https://doi.org/10.1109/TIP.2023.3244662info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T18:09:36Zoai:run.unl.pt:10362/149941Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:39:59.926636Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Full-Reference Image Quality Expression via Genetic Programming |
title |
Full-Reference Image Quality Expression via Genetic Programming |
spellingShingle |
Full-Reference Image Quality Expression via Genetic Programming Bakurov, Illya image quality full-reference image quality assessment image similarity ssim genetic programming Software Computer Graphics and Computer-Aided Design |
title_short |
Full-Reference Image Quality Expression via Genetic Programming |
title_full |
Full-Reference Image Quality Expression via Genetic Programming |
title_fullStr |
Full-Reference Image Quality Expression via Genetic Programming |
title_full_unstemmed |
Full-Reference Image Quality Expression via Genetic Programming |
title_sort |
Full-Reference Image Quality Expression via Genetic Programming |
author |
Bakurov, Illya |
author_facet |
Bakurov, Illya Buzzelli, Marco Schettini, Raimondo Castelli, Mauro Vanneschi, Leonardo |
author_role |
author |
author2 |
Buzzelli, Marco Schettini, Raimondo Castelli, Mauro Vanneschi, Leonardo |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
NOVA Information Management School (NOVA IMS) Information Management Research Center (MagIC) - NOVA Information Management School RUN |
dc.contributor.author.fl_str_mv |
Bakurov, Illya Buzzelli, Marco Schettini, Raimondo Castelli, Mauro Vanneschi, Leonardo |
dc.subject.por.fl_str_mv |
image quality full-reference image quality assessment image similarity ssim genetic programming Software Computer Graphics and Computer-Aided Design |
topic |
image quality full-reference image quality assessment image similarity ssim genetic programming Software Computer Graphics and Computer-Aided Design |
description |
Bakurov, I., Buzzelli, M., Schettini, R., Castelli, M., & Vanneschi, L. (2023). Full-Reference Image Quality Expression via Genetic Programming. IEEE Transactions on Image Processing, 32, 1458-1473. https://doi.org/10.1109/TIP.2023.3244662--- This work was supported by national funds through the FCT (Fundação para a Ciência e a Tecnologia) under the projects Algoritmos de Inteligência artificial no Consumo de crédito e conciliação de Endividamento (AICE) (DSAIPA/DS/0113/2019) and UIDB/04152/2020 - Centro de Investigação em Gestão de Informação (MagIC)/NOVA IMS. Mauro Castelli acknowledges the financial support from the Slovenian Research Agency (research core funding no. P5-0410). |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-03-02T22:27:05Z 2023-03-01 2023-03-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/149941 |
url |
http://hdl.handle.net/10362/149941 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1941-0042 PURE: 52561008 https://doi.org/10.1109/TIP.2023.3244662 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
16 application/pdf application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833596875246141440 |