Preparation and in vitro characterization of scaffolds of poly(L-lactic acid) containing bioactive glass ceramic nanoparticles

Bibliographic Details
Main Author: Hong, Z.
Publication Date: 2008
Other Authors: Reis, R. L., Mano, J. F.
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: https://hdl.handle.net/1822/20255
Summary: Porous nanocomposite scaffolds of poly(L-lactic acid) (PLLA) containing different quantities of bioactive glass ceramic (BGC) nanoparticles (SiO2:CaO:P2O5 ! 55:40:5 (mol)) were prepared by a thermally induced phase-separation method. Dioxane was used as the solvent for PLLA. Introduction of less than 20 wt.% of BGC nanoparticles did not remarkably affect the porosity of PLLA foam. However, as the BGC content increased to 30 wt.%, the porosity of the composite was observed to decrease rapidly. The compressive modulus of the scaffolds increased from 5.5 to 8.0 MPa, while the compressive strength increased from 0.28 to 0.35 MPa as the BGC content increased from 0 to 30 wt.%. The in vitro bioactivity and biodegradability of nanocomposites were investigated by incubation in simulated body fluid (SBF) and phosphate-buffered saline, respectively. Scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy and X-ray diffraction were employed to monitor the surface variation of neat PLLA and PLLA/ BGC porous scaffolds during incubation. PLLA/(20 wt.%)BGC composite exhibited the best mineralization property in SBF, while the PLLA/(10 wt.%)BGC composite showed the highest water absorption ability.
id RCAP_7a467be3f60eefe2ac3ba5f2a6c326ae
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/20255
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Preparation and in vitro characterization of scaffolds of poly(L-lactic acid) containing bioactive glass ceramic nanoparticlesNanocompositesPoly(L-lactic acid)Bioactive glass ceramicBone tissue engineeringScaffoldsScience & TechnologyPorous nanocomposite scaffolds of poly(L-lactic acid) (PLLA) containing different quantities of bioactive glass ceramic (BGC) nanoparticles (SiO2:CaO:P2O5 ! 55:40:5 (mol)) were prepared by a thermally induced phase-separation method. Dioxane was used as the solvent for PLLA. Introduction of less than 20 wt.% of BGC nanoparticles did not remarkably affect the porosity of PLLA foam. However, as the BGC content increased to 30 wt.%, the porosity of the composite was observed to decrease rapidly. The compressive modulus of the scaffolds increased from 5.5 to 8.0 MPa, while the compressive strength increased from 0.28 to 0.35 MPa as the BGC content increased from 0 to 30 wt.%. The in vitro bioactivity and biodegradability of nanocomposites were investigated by incubation in simulated body fluid (SBF) and phosphate-buffered saline, respectively. Scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy and X-ray diffraction were employed to monitor the surface variation of neat PLLA and PLLA/ BGC porous scaffolds during incubation. PLLA/(20 wt.%)BGC composite exhibited the best mineralization property in SBF, while the PLLA/(10 wt.%)BGC composite showed the highest water absorption ability.This work was financially supported by FCT Grant for postdoctoral research (SFRH/BPD/25828/2005), and by the Projects POCTI/FIS/61621/2004 and PTDC/QUI/69263/2006. The authors also would like to acknowledge Dr. Aixue Liu, Changchun Institute of Applied Chemistry, for his help in characterization of composite material.ElsevierUniversidade do MinhoHong, Z.Reis, R. L.Mano, J. F.20082008-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/20255eng1742-706110.1016/j.actbio.2008.03.00718439885info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-04-12T05:19:01Zoai:repositorium.sdum.uminho.pt:1822/20255Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T16:22:59.294199Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Preparation and in vitro characterization of scaffolds of poly(L-lactic acid) containing bioactive glass ceramic nanoparticles
title Preparation and in vitro characterization of scaffolds of poly(L-lactic acid) containing bioactive glass ceramic nanoparticles
spellingShingle Preparation and in vitro characterization of scaffolds of poly(L-lactic acid) containing bioactive glass ceramic nanoparticles
Hong, Z.
Nanocomposites
Poly(L-lactic acid)
Bioactive glass ceramic
Bone tissue engineering
Scaffolds
Science & Technology
title_short Preparation and in vitro characterization of scaffolds of poly(L-lactic acid) containing bioactive glass ceramic nanoparticles
title_full Preparation and in vitro characterization of scaffolds of poly(L-lactic acid) containing bioactive glass ceramic nanoparticles
title_fullStr Preparation and in vitro characterization of scaffolds of poly(L-lactic acid) containing bioactive glass ceramic nanoparticles
title_full_unstemmed Preparation and in vitro characterization of scaffolds of poly(L-lactic acid) containing bioactive glass ceramic nanoparticles
title_sort Preparation and in vitro characterization of scaffolds of poly(L-lactic acid) containing bioactive glass ceramic nanoparticles
author Hong, Z.
author_facet Hong, Z.
Reis, R. L.
Mano, J. F.
author_role author
author2 Reis, R. L.
Mano, J. F.
author2_role author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Hong, Z.
Reis, R. L.
Mano, J. F.
dc.subject.por.fl_str_mv Nanocomposites
Poly(L-lactic acid)
Bioactive glass ceramic
Bone tissue engineering
Scaffolds
Science & Technology
topic Nanocomposites
Poly(L-lactic acid)
Bioactive glass ceramic
Bone tissue engineering
Scaffolds
Science & Technology
description Porous nanocomposite scaffolds of poly(L-lactic acid) (PLLA) containing different quantities of bioactive glass ceramic (BGC) nanoparticles (SiO2:CaO:P2O5 ! 55:40:5 (mol)) were prepared by a thermally induced phase-separation method. Dioxane was used as the solvent for PLLA. Introduction of less than 20 wt.% of BGC nanoparticles did not remarkably affect the porosity of PLLA foam. However, as the BGC content increased to 30 wt.%, the porosity of the composite was observed to decrease rapidly. The compressive modulus of the scaffolds increased from 5.5 to 8.0 MPa, while the compressive strength increased from 0.28 to 0.35 MPa as the BGC content increased from 0 to 30 wt.%. The in vitro bioactivity and biodegradability of nanocomposites were investigated by incubation in simulated body fluid (SBF) and phosphate-buffered saline, respectively. Scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy and X-ray diffraction were employed to monitor the surface variation of neat PLLA and PLLA/ BGC porous scaffolds during incubation. PLLA/(20 wt.%)BGC composite exhibited the best mineralization property in SBF, while the PLLA/(10 wt.%)BGC composite showed the highest water absorption ability.
publishDate 2008
dc.date.none.fl_str_mv 2008
2008-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1822/20255
url https://hdl.handle.net/1822/20255
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1742-7061
10.1016/j.actbio.2008.03.007
18439885
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833595910253182976