Impact of multiple imputation of missing socio-economic data in discrete choice analysis

Detalhes bibliográficos
Autor(a) principal: Arsénio, E.
Data de Publicação: 2012
Outros Autores: Azeredo Lopes, S.
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://repositorio.lnec.pt:8080/jspui/handle/123456789/1003911
Resumo: This paper aims to assess the impact of missing income data on estimates of the accuracy of marginal costs of aviation noise externalities, namely missing socio-economic attributes which are normally used to segment the sample for policy purposes. The experimental approach comprised a comparison between the coefficient parameter estimates obtained by fitting multinomial logit models using econometric software to both the complete data set and to data sets where several amounts of income data were replaced by missing values (5%, 10%, 25% and 50%). The latter data sets were analysed employing the two most common methods for missingness: the LD and the Multiple Imputation (MI) method using the expectation-maximization Bayesian bootstrapping algorithm within the Amelia II software program. The most appropriate number of imputations and the set of variables used to obtain the imputations with the MI approach are further investigated. The comparisons will be made through measures of accuracy of parameter estimates and of the combined model.
id RCAP_791b26169dc8e963df69e9617511397c
oai_identifier_str oai:localhost:123456789/1003911
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Impact of multiple imputation of missing socio-economic data in discrete choice analysisAviation externalitiesDiscrete-choiceMissing income dataMultiple imputationThis paper aims to assess the impact of missing income data on estimates of the accuracy of marginal costs of aviation noise externalities, namely missing socio-economic attributes which are normally used to segment the sample for policy purposes. The experimental approach comprised a comparison between the coefficient parameter estimates obtained by fitting multinomial logit models using econometric software to both the complete data set and to data sets where several amounts of income data were replaced by missing values (5%, 10%, 25% and 50%). The latter data sets were analysed employing the two most common methods for missingness: the LD and the Multiple Imputation (MI) method using the expectation-maximization Bayesian bootstrapping algorithm within the Amelia II software program. The most appropriate number of imputations and the set of variables used to obtain the imputations with the MI approach are further investigated. The comparisons will be made through measures of accuracy of parameter estimates and of the combined model.AET and contributors2012-10-15T08:25:58Z2014-10-21T09:03:18Z2017-04-12T14:41:00Z2012-10-10T00:00:00Z2012-10-10conference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://repositorio.lnec.pt:8080/jspui/handle/123456789/1003911engArsénio, E.Azeredo Lopes, S.info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-05-17T02:58:20Zoai:localhost:123456789/1003911Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T07:32:29.672197Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Impact of multiple imputation of missing socio-economic data in discrete choice analysis
title Impact of multiple imputation of missing socio-economic data in discrete choice analysis
spellingShingle Impact of multiple imputation of missing socio-economic data in discrete choice analysis
Arsénio, E.
Aviation externalities
Discrete-choice
Missing income data
Multiple imputation
title_short Impact of multiple imputation of missing socio-economic data in discrete choice analysis
title_full Impact of multiple imputation of missing socio-economic data in discrete choice analysis
title_fullStr Impact of multiple imputation of missing socio-economic data in discrete choice analysis
title_full_unstemmed Impact of multiple imputation of missing socio-economic data in discrete choice analysis
title_sort Impact of multiple imputation of missing socio-economic data in discrete choice analysis
author Arsénio, E.
author_facet Arsénio, E.
Azeredo Lopes, S.
author_role author
author2 Azeredo Lopes, S.
author2_role author
dc.contributor.author.fl_str_mv Arsénio, E.
Azeredo Lopes, S.
dc.subject.por.fl_str_mv Aviation externalities
Discrete-choice
Missing income data
Multiple imputation
topic Aviation externalities
Discrete-choice
Missing income data
Multiple imputation
description This paper aims to assess the impact of missing income data on estimates of the accuracy of marginal costs of aviation noise externalities, namely missing socio-economic attributes which are normally used to segment the sample for policy purposes. The experimental approach comprised a comparison between the coefficient parameter estimates obtained by fitting multinomial logit models using econometric software to both the complete data set and to data sets where several amounts of income data were replaced by missing values (5%, 10%, 25% and 50%). The latter data sets were analysed employing the two most common methods for missingness: the LD and the Multiple Imputation (MI) method using the expectation-maximization Bayesian bootstrapping algorithm within the Amelia II software program. The most appropriate number of imputations and the set of variables used to obtain the imputations with the MI approach are further investigated. The comparisons will be made through measures of accuracy of parameter estimates and of the combined model.
publishDate 2012
dc.date.none.fl_str_mv 2012-10-15T08:25:58Z
2012-10-10T00:00:00Z
2012-10-10
2014-10-21T09:03:18Z
2017-04-12T14:41:00Z
dc.type.driver.fl_str_mv conference object
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.lnec.pt:8080/jspui/handle/123456789/1003911
url http://repositorio.lnec.pt:8080/jspui/handle/123456789/1003911
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv AET and contributors
publisher.none.fl_str_mv AET and contributors
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833602998410936320