On the Doubly Singular Equation γ(u)t = ∆_pu

Bibliographic Details
Main Author: Henriques, Eurica
Publication Date: 2005
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: https://hdl.handle.net/10348/12448
Summary: We prove that local weak solutions of a nonlinear parabolic equation with a doubly singular character are locally continuous. One singularity occurs in the time derivative and is due to the presence of a maximal monotone graph; the other comes up in the principal part of the PDE, where the p-Laplace operator is considered. The paper extends to the singular case 1 < p < 2, the results obtained previously by the second author for the degenerate case p > 2; it completes a regularity theory for a type of PDEs that model phase transitions for a material obeying a nonlinear law of diffusion.
id RCAP_77e6d72775f173747e12e3f0b7a8dc38
oai_identifier_str oai:repositorio.utad.pt:10348/12448
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling On the Doubly Singular Equation γ(u)t = ∆_puDoubly singular PDEIntrinsic scalingPhase transitionRegularity theoryWe prove that local weak solutions of a nonlinear parabolic equation with a doubly singular character are locally continuous. One singularity occurs in the time derivative and is due to the presence of a maximal monotone graph; the other comes up in the principal part of the PDE, where the p-Laplace operator is considered. The paper extends to the singular case 1 < p < 2, the results obtained previously by the second author for the degenerate case p > 2; it completes a regularity theory for a type of PDEs that model phase transitions for a material obeying a nonlinear law of diffusion.Taylor & Francis2024-05-08T11:19:12Z2005-01-01T00:00:00Z2005info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/10348/12448engDOI: 10.1081/PDE-200059308Henriques, Euricainfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-12T02:03:32Zoai:repositorio.utad.pt:10348/12448Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T16:35:53.333932Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv On the Doubly Singular Equation γ(u)t = ∆_pu
title On the Doubly Singular Equation γ(u)t = ∆_pu
spellingShingle On the Doubly Singular Equation γ(u)t = ∆_pu
Henriques, Eurica
Doubly singular PDE
Intrinsic scaling
Phase transition
Regularity theory
title_short On the Doubly Singular Equation γ(u)t = ∆_pu
title_full On the Doubly Singular Equation γ(u)t = ∆_pu
title_fullStr On the Doubly Singular Equation γ(u)t = ∆_pu
title_full_unstemmed On the Doubly Singular Equation γ(u)t = ∆_pu
title_sort On the Doubly Singular Equation γ(u)t = ∆_pu
author Henriques, Eurica
author_facet Henriques, Eurica
author_role author
dc.contributor.author.fl_str_mv Henriques, Eurica
dc.subject.por.fl_str_mv Doubly singular PDE
Intrinsic scaling
Phase transition
Regularity theory
topic Doubly singular PDE
Intrinsic scaling
Phase transition
Regularity theory
description We prove that local weak solutions of a nonlinear parabolic equation with a doubly singular character are locally continuous. One singularity occurs in the time derivative and is due to the presence of a maximal monotone graph; the other comes up in the principal part of the PDE, where the p-Laplace operator is considered. The paper extends to the singular case 1 < p < 2, the results obtained previously by the second author for the degenerate case p > 2; it completes a regularity theory for a type of PDEs that model phase transitions for a material obeying a nonlinear law of diffusion.
publishDate 2005
dc.date.none.fl_str_mv 2005-01-01T00:00:00Z
2005
2024-05-08T11:19:12Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10348/12448
url https://hdl.handle.net/10348/12448
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv DOI: 10.1081/PDE-200059308
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Taylor & Francis
publisher.none.fl_str_mv Taylor & Francis
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833596046532411392