Different lexicon-based approaches to emotion identification in Portuguese tweets

Detalhes bibliográficos
Autor(a) principal: Filipe, S.
Data de Publicação: 2020
Outros Autores: Batista, F., Ribeiro, R.
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/10071/22743
Resumo: This paper presents the existing literature on the identification of emotions and describes various lexica-based approaches and translation strategies to identify emotions in Portuguese tweets. A dataset of tweets was manually annotated to evaluate our classifier and also to assess the difficulty of the task. A lexicon-based approach was used in order to classify the presence or absence of eight different emotions in a tweet. Different strategies have been applied to refine and improve an existing and widely used lexicon, by means of automatic machine translation and aligned word embeddings. We tested six different classification approaches, exploring different ways of directly applying resources available for English by means of different translation strategies. The achieved results suggest that a better performance can be obtained both by improving a lexicon and by directly translating tweets into English and then applying an existing English lexicon.
id RCAP_73e7cc1a90bffafdb62072b9873cdca6
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/22743
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Different lexicon-based approaches to emotion identification in Portuguese tweetsEmotion detectionEmotion lexiconPortuguese languageTweetsThis paper presents the existing literature on the identification of emotions and describes various lexica-based approaches and translation strategies to identify emotions in Portuguese tweets. A dataset of tweets was manually annotated to evaluate our classifier and also to assess the difficulty of the task. A lexicon-based approach was used in order to classify the presence or absence of eight different emotions in a tweet. Different strategies have been applied to refine and improve an existing and widely used lexicon, by means of automatic machine translation and aligned word embeddings. We tested six different classification approaches, exploring different ways of directly applying resources available for English by means of different translation strategies. The achieved results suggest that a better performance can be obtained both by improving a lexicon and by directly translating tweets into English and then applying an existing English lexicon.Schloss Dagstuhl--Leibniz-Zentrum für Informatik2021-06-16T10:07:44Z2020-01-01T00:00:00Z20202021-06-16T11:05:54Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10071/22743eng978-3-95977-165-82190-680710.4230/OASIcs.SLATE.2020.12Filipe, S.Batista, F.Ribeiro, R.info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-07-07T03:27:27Zoai:repositorio.iscte-iul.pt:10071/22743Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T18:24:14.949917Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Different lexicon-based approaches to emotion identification in Portuguese tweets
title Different lexicon-based approaches to emotion identification in Portuguese tweets
spellingShingle Different lexicon-based approaches to emotion identification in Portuguese tweets
Filipe, S.
Emotion detection
Emotion lexicon
Portuguese language
Tweets
title_short Different lexicon-based approaches to emotion identification in Portuguese tweets
title_full Different lexicon-based approaches to emotion identification in Portuguese tweets
title_fullStr Different lexicon-based approaches to emotion identification in Portuguese tweets
title_full_unstemmed Different lexicon-based approaches to emotion identification in Portuguese tweets
title_sort Different lexicon-based approaches to emotion identification in Portuguese tweets
author Filipe, S.
author_facet Filipe, S.
Batista, F.
Ribeiro, R.
author_role author
author2 Batista, F.
Ribeiro, R.
author2_role author
author
dc.contributor.author.fl_str_mv Filipe, S.
Batista, F.
Ribeiro, R.
dc.subject.por.fl_str_mv Emotion detection
Emotion lexicon
Portuguese language
Tweets
topic Emotion detection
Emotion lexicon
Portuguese language
Tweets
description This paper presents the existing literature on the identification of emotions and describes various lexica-based approaches and translation strategies to identify emotions in Portuguese tweets. A dataset of tweets was manually annotated to evaluate our classifier and also to assess the difficulty of the task. A lexicon-based approach was used in order to classify the presence or absence of eight different emotions in a tweet. Different strategies have been applied to refine and improve an existing and widely used lexicon, by means of automatic machine translation and aligned word embeddings. We tested six different classification approaches, exploring different ways of directly applying resources available for English by means of different translation strategies. The achieved results suggest that a better performance can be obtained both by improving a lexicon and by directly translating tweets into English and then applying an existing English lexicon.
publishDate 2020
dc.date.none.fl_str_mv 2020-01-01T00:00:00Z
2020
2021-06-16T10:07:44Z
2021-06-16T11:05:54Z
dc.type.driver.fl_str_mv conference object
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/22743
url http://hdl.handle.net/10071/22743
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 978-3-95977-165-8
2190-6807
10.4230/OASIcs.SLATE.2020.12
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Schloss Dagstuhl--Leibniz-Zentrum für Informatik
publisher.none.fl_str_mv Schloss Dagstuhl--Leibniz-Zentrum für Informatik
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833597386204643328