Future railway mobile communication system automated planning
| Main Author: | |
|---|---|
| Publication Date: | 2023 |
| Format: | Master thesis |
| Language: | eng |
| Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Download full: | http://hdl.handle.net/10400.21/17814 |
Summary: | With the end of support for the Global System for Mobile Communications Railway (GSM-R) in sight, there needs to be a change in the technology used in railway communications. To achieve this, operators began the transition to Future Railway Mobile Communication System (FRMCS). The work developed in this thesis demonstrates the application of the concept of ge netic algorithms in a telecommunications network planning. Where the objective is to understand whether the results obtained are viable comparing to the currently practiced values. To achieve this, it is necessary to develop an algorithm that allows to obtaining the best possible solution for the placement of antennas along the line in the most efficient way, taking into account its coverage. The work developed includes the construction of this same algorithm and all its phases.Using the Cascais line as a test subject and with the help of data made available by the company Solvit, it is possible to obtain different scenarios varying four parameters, the population size, the number of generations, the crossover probability and the mutation probability. The final results prove that the use of genetic algorithms to optimize a railway telecommunications network can be a useful and powerful tool, as the results obtained presents an optimized value compared to the current solution used by public operators. |
| id |
RCAP_735637f031178d8cf473d4fb9a8412b0 |
|---|---|
| oai_identifier_str |
oai:repositorio.ipl.pt:10400.21/17814 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Future railway mobile communication system automated planningTelecommunicationsRailway communicationsGenetic algorithmsNetwork optimizationFRMCSTelecomunicaçõesComunicações ferroviáriasAlgoritmos genéticosOtimização de redesWith the end of support for the Global System for Mobile Communications Railway (GSM-R) in sight, there needs to be a change in the technology used in railway communications. To achieve this, operators began the transition to Future Railway Mobile Communication System (FRMCS). The work developed in this thesis demonstrates the application of the concept of ge netic algorithms in a telecommunications network planning. Where the objective is to understand whether the results obtained are viable comparing to the currently practiced values. To achieve this, it is necessary to develop an algorithm that allows to obtaining the best possible solution for the placement of antennas along the line in the most efficient way, taking into account its coverage. The work developed includes the construction of this same algorithm and all its phases.Using the Cascais line as a test subject and with the help of data made available by the company Solvit, it is possible to obtain different scenarios varying four parameters, the population size, the number of generations, the crossover probability and the mutation probability. The final results prove that the use of genetic algorithms to optimize a railway telecommunications network can be a useful and powerful tool, as the results obtained presents an optimized value compared to the current solution used by public operators.Com o fim do suporte da rede Global System for Mobile Communications Railway (GSM-R) à vista, é necessário que ocorra uma mudança na tencologia usada em comunicações ferroviárias. Para isso os operadores começaram a transição para Future Railway Mobile Communication System (FRMCS). O trabalho desenvolvido na presente tese demonstra a aplicação do conceito de algoritmos genéticos no planeamento de uma rede de telecomunicações. Onde o objetivo é perceber se os resultados obtidos são viáveis e de boa qualidade em comparação com os valores atualmente praticados. Para isso, é necessário o desenvolvimento de um algoritmo que, de forma eficiente permita obter a melhor solução possível para a colocação das antenas ao longo da linha, tendo em conta a cobertura da mesma. O trabalho desenvolvido incluí a construção deste mesmo algorítmo e de todas as suas fases. Utilizando a linha de Cascais como sujeito de teste e com o auxílio de dados disponibilizados pela empresa Solvit é possível obter diversos cenários variando quatro parâmetros, a dimensão da população, o número de gerações, a probabilidade de cruzamento e a probabilidade de mutação. Os resultados finais comprovam que o uso de algoritmos genéticos para a otimização de uma rede de telecomunicações em ferrovia pode ser uma ferramenta útil e poderosa, uma vez que os resultados obtidos apresentam um valor otimizados em comparação com o valor da solução atual com a parametrização usada.Instituto Superior de Engenharia de LisboaCota, NunoPato, Matilde Pós-de-MinaRCIPLQueirós, Artur Daniel Rocha2024-10-28T15:36:10Z2023-092023-09-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.21/17814urn:tid:203471326enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-12T09:53:17Zoai:repositorio.ipl.pt:10400.21/17814Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T20:03:31.740971Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Future railway mobile communication system automated planning |
| title |
Future railway mobile communication system automated planning |
| spellingShingle |
Future railway mobile communication system automated planning Queirós, Artur Daniel Rocha Telecommunications Railway communications Genetic algorithms Network optimization FRMCS Telecomunicações Comunicações ferroviárias Algoritmos genéticos Otimização de redes |
| title_short |
Future railway mobile communication system automated planning |
| title_full |
Future railway mobile communication system automated planning |
| title_fullStr |
Future railway mobile communication system automated planning |
| title_full_unstemmed |
Future railway mobile communication system automated planning |
| title_sort |
Future railway mobile communication system automated planning |
| author |
Queirós, Artur Daniel Rocha |
| author_facet |
Queirós, Artur Daniel Rocha |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Cota, Nuno Pato, Matilde Pós-de-Mina RCIPL |
| dc.contributor.author.fl_str_mv |
Queirós, Artur Daniel Rocha |
| dc.subject.por.fl_str_mv |
Telecommunications Railway communications Genetic algorithms Network optimization FRMCS Telecomunicações Comunicações ferroviárias Algoritmos genéticos Otimização de redes |
| topic |
Telecommunications Railway communications Genetic algorithms Network optimization FRMCS Telecomunicações Comunicações ferroviárias Algoritmos genéticos Otimização de redes |
| description |
With the end of support for the Global System for Mobile Communications Railway (GSM-R) in sight, there needs to be a change in the technology used in railway communications. To achieve this, operators began the transition to Future Railway Mobile Communication System (FRMCS). The work developed in this thesis demonstrates the application of the concept of ge netic algorithms in a telecommunications network planning. Where the objective is to understand whether the results obtained are viable comparing to the currently practiced values. To achieve this, it is necessary to develop an algorithm that allows to obtaining the best possible solution for the placement of antennas along the line in the most efficient way, taking into account its coverage. The work developed includes the construction of this same algorithm and all its phases.Using the Cascais line as a test subject and with the help of data made available by the company Solvit, it is possible to obtain different scenarios varying four parameters, the population size, the number of generations, the crossover probability and the mutation probability. The final results prove that the use of genetic algorithms to optimize a railway telecommunications network can be a useful and powerful tool, as the results obtained presents an optimized value compared to the current solution used by public operators. |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-09 2023-09-01T00:00:00Z 2024-10-28T15:36:10Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.21/17814 urn:tid:203471326 |
| url |
http://hdl.handle.net/10400.21/17814 |
| identifier_str_mv |
urn:tid:203471326 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Instituto Superior de Engenharia de Lisboa |
| publisher.none.fl_str_mv |
Instituto Superior de Engenharia de Lisboa |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833598466154037248 |